Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solution-phase deposition and nanopatterning of GeSbSe phase-change materials

Abstract

Chalcogenide films with reversible amorphous–crystalline phase transitions have been commercialized as optically rewritable data-storage media1,2, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM)3,4,5. Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography3. Metal chalcogenide films for transistor applications have recently been deposited by a low-temperature, solution-phase route6,7,8,9. Here, we extend this methodology to prepare thin films and nanostructures of GeSbSe phase-change materials. We report the ready tuneability of phase-change properties in GeSbSe films through composition variation achieved by combining novel precursors in solution. Rapid, submicrosecond phase switching is observed by laser-pulse annealing. We also demonstrate that prepatterned holes can be filled to fabricate phase-change nanostructures from hundreds down to tens of nanometres in size, offering enhanced flexibility in fabricating PCRAM devices with reduced current requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray diffraction of GeSbSe thin films during thermal annealing.
Figure 2: Laser-pulse annealing of GeSbSe thin films.
Figure 3: Filling patterns with phase-change material.
Figure 4: X-ray diffraction of GeSbSe nanodot array during thermal annealing.

Similar content being viewed by others

References

  1. Mansuripur, M. Rewritable optical disk technologies. Proc. SPIE 4109, 162–176 (2000).

    Article  Google Scholar 

  2. Yamada, N. Erasable phase-change optical materials. Mater. Res. Soc. Bull. 21, 48–50 (1996).

    Article  CAS  Google Scholar 

  3. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005).

    Article  CAS  Google Scholar 

  4. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered systems. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  5. Hudgens, S. & Johnson, B. Overview of phase-change chalcogenide nonvolatile memory technology. Mater. Res. Soc. Bull. 29, 829–832 (2004).

    Article  CAS  Google Scholar 

  6. Milliron, D. J., Mitzi, D. B., Copel, M. & Murray, C. E. Solution processed metal chalcogenide films for p-type transistors. Chem. Mater. 18, 587–590 (2006).

    Article  CAS  Google Scholar 

  7. Mitzi, D. B., Copel, M. & Chey, S. J. Low-voltage transistor employing a high-mobility spin-coated chalcogenide semiconductor. Adv. Mater. 17, 1285–1289 (2005).

    Article  CAS  Google Scholar 

  8. Mitzi, D. B., Copel, M. & Murray, C. E. High-mobility p-type transistor based on a spin-coated metal telluride semiconductor. Adv. Mater. 18, 2448–2452 (2006).

    Article  CAS  Google Scholar 

  9. Mitzi, D. B., Kosbar, L. L., Murray, C. E., Copel, M. & Afzali, A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature 428, 299–303 (2004).

    Article  CAS  Google Scholar 

  10. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004).

    Article  CAS  Google Scholar 

  11. Welnic, W. et al. Unravelling the interplay of local structure and physical properties in phase-change materials. Nature Mater. 5, 56–62 (2006).

    Article  CAS  Google Scholar 

  12. Kang, M. J. et al. Structural transformation of SbxSe100−x thin films for phase change nonvolatile memory applications. J. Appl. Phys. 98, 014904 (2005).

    Article  Google Scholar 

  13. Wuttig, M. et al. The quest for fast phase change materials. J. Magn. Magn. Mater. 249, 492–498 (2002).

    Article  CAS  Google Scholar 

  14. von Pieterson, L., Lankhorst, M. H. R., van Schijndel, M., Kuiper, A. E. T. & Roosen, J. H. J. Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview. J. Appl. Phys. 97, 083520 (2005).

    Article  Google Scholar 

  15. Babeva, T., Dimitrov, D., Kitova, S. & Konstantinov, I. Optical properties of phase-change optical disks with SbxSe100−x films. Vacuum 58, 496–501 (2000).

    Article  CAS  Google Scholar 

  16. Dimitrov, D., Ollacarizqueta, M. A., Afonso, C. N. & Starbov, N. Crystallization kinetics of SbxSe100−x thin films. Thin Solid Films 280, 278–283 (1996).

    Article  CAS  Google Scholar 

  17. Barton, R., David, C. R., Rubin, K. & Lim, G. New phase change material for optical recording with short erase time. Appl. Phys. Lett. 48, 1255–1257 (1986).

    Article  CAS  Google Scholar 

  18. El-Salam, F. A., Afify, M. A. & El-Wahabb, E. A. Switching phenomenon in amorphous Sb2Se3 . Vacuum 44, 17–22 (1993).

    Article  Google Scholar 

  19. Katti, V. R., Govindacharyulu, P. A. & Bose, D. N. Electrical and optical properties of amorphous semiconducting GeSe and GeSbSe films. Thin Solid Films 14, 143–148 (1972).

    Article  CAS  Google Scholar 

  20. Salmon, P. S. & Petri, I. Structure of glassy and liquid GeSe2 . J. Phys. Condens. Matter 15, S1509–S1528 (2003).

    Article  CAS  Google Scholar 

  21. Weidenhof, V., Pirch, N., Friedrich, I., Ziegler, S. & Wuttig, M. Minimum time for laser induced amorphization of Ge2Sb2Te5 films. J. Appl. Phys. 88, 657–664 (2000).

    Article  CAS  Google Scholar 

  22. Coombs, J. H., Jongenelis, A. P. J. M., Vanesspiekman, W. & Jacobs, B. A. J. Laser-induced crystallization phenomena in GeTe-based alloys. 1. Characterization of nucleation and growth. J. Appl. Phys. 78, 4906–4917 (1995).

    Article  CAS  Google Scholar 

  23. Weidenhof, V., Friedrich, I., Ziegler, S. & Wuttig, M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J. Appl. Phys. 89, 3168–3176 (2001).

    Article  CAS  Google Scholar 

  24. Sandhu, G. S. Process technology and integration challenges for high performance interconnects. Thin Solid Films 320, 1–9 (1998).

    Article  CAS  Google Scholar 

  25. Guarini, K. W., Black, C. T., Milkove, K. R. & Sandstrom, R. L. Nanoscale patterning using self-assembled polymers for semiconductor applications. J. Vac. Sci. Technol. 19, 2784–2788 (2001).

    Article  CAS  Google Scholar 

  26. Xu, T. et al. Block copolymer surface reconstruction: A reversible route to nanoporous films. Adv. Funct. Mater. 13, 698–702 (2003).

    Article  CAS  Google Scholar 

  27. Martens, H. C. F., Vlutters, R. & Prangsma, J. C. Thickness dependent crystallization speed in thin phase change layers used for optical recording. J. Appl. Phys. 95, 3977–3983 (2004).

    Article  CAS  Google Scholar 

  28. Mitzi, D. B. et al. Solution-based processing of the phase-change material KSb5S8 . Chem. Mater. 18, 6278–6282 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with D. Mitzi and thank J. Bunten for assistance with thin-film preparation, R. Ruiz, M. Caldwell and M. Hart for preparation of block-copolymer templates, M. Sanchez and C. Rettner for scanning electron microscopy and A. Kellock for RBS and PIXE analysis.

Author information

Authors and Affiliations

Authors

Contributions

D.J.M. developed the GeSbSe materials and prepared all GeSbSe samples, D.J.M. and S.R. made electrical measurements, S.R. and J.J.S. collected and analysed XRD data, R.M.S. carried out and interpreted laser pulse annealing experiments.

Corresponding author

Correspondence to Delia J. Milliron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1 and 2 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milliron, D., Raoux, S., Shelby, R. et al. Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. Nature Mater 6, 352–356 (2007). https://doi.org/10.1038/nmat1887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing