Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection

Abstract

Electronic interactions at the nanoscale represent one of the fundamental problems of nanotechnology. Excitons and plasmons are the two most typical excited states of nanostructures, which have been shown to produce coupled electronic systems1,2,3,4,5,6,7,8,9,10,11. Here, we explore these interactions for the case of nanowires with mobile excitons and nanoparticles with localized plasmons and describe the theoretical formalism, its experimental validation and the potential practical applications of such nanoscale systems. Theory predicts that emission of coupled excitations in nanowires with variable electronic confinement is stronger, shorter and blue-shifted. These predictions were confirmed with a high degree of accuracy in molecular spring assemblies of CdTe nanowires and Au nanoparticles, where we can reversibly change the distance between the exciton and the plasmon. The prepared systems were made protein-sensitive by incorporating antibodies in the molecular springs. Modulation of exciton–plasmon interactions can serve as a wavelength-based biodetection tool, which can resolve difficulties in the quantification of luminescence intensity for complex media and optical pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical model and results for exciton dynamic calculations in the nanowire assemblies with Au nanoparticles.
Figure 2: Preparation of NW–NP superstructures with PEG molecular springs.
Figure 3: Wavelength shift in the NW–PEG–aB–PEG–NP superstructure.
Figure 4: Calibration curve for SA.

Similar content being viewed by others

References

  1. Tang, Z. & Kotov, N. A. One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005).

    Article  CAS  Google Scholar 

  2. Zhang, J., Coombs, N., Kumacheva, E., Lin, Y. & Sargent, E. H. A new approach to hybrid polymer-metal and polymer-semiconductor particles. Adv. Mater. 14, 1756–1759 (2002).

    Article  CAS  Google Scholar 

  3. Zhang, H. et al. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Mater. 4, 787–793 (2005).

    Article  CAS  Google Scholar 

  4. Niemeyer, C. M. Functional hybrid devices of proteins and inorganic nanoparticles. Angew. Chem. Int. Edn 42, 5796–5800 (2003).

    Article  CAS  Google Scholar 

  5. Dyadyusha, L. et al. Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem. Commun. 3201–3203 (2005).

  6. Oh, E. et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc. 127, 3270–3271 (2005).

    Article  CAS  Google Scholar 

  7. Fu, A. et al. Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc. 126, 10832–10833 (2004).

    Article  CAS  Google Scholar 

  8. Gueroui, Z. & Libchaber, A. Single-molecule measurements of gold-quenched quantum dots. Phys. Rev. Lett. 93, 166108 (2004).

    Article  Google Scholar 

  9. Lee, J., Govorov, A. O. & Kotov, N. A. Bioconjugated superstructures of CdTe nanowires and nanoparticles: Multistep cascade Foerster resonance energy transfer and energy channeling. Nano Lett. 5, 2063–2069 (2005).

    Article  CAS  Google Scholar 

  10. Nikoobakht, B., Burda, C., Braun, M., Hun, M. & El-Sayed, M. A. The quenching of CdSe quantum dots photoluminescence by gold nanoparticles in solution. Photochem. Photobiol. 75, 591–597 (2002).

    Article  CAS  Google Scholar 

  11. Sarathy, K. V., Thomas, P. J., Kulkarni, G. U. & Rao, C. N. R. Superlattices of metal and metal-semiconductor quantum dots obtained by layer-by-layer deposition of nanoparticle arrays. J. Phys. Chem. B 103, 399–401 (1999).

    Article  CAS  Google Scholar 

  12. Lee, J., Govorov, A. O., Dulka, J. & Kotov, N. A. Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett. 4, 2323–2330 (2004).

    Article  CAS  Google Scholar 

  13. Dulkeith, E. et al. Fluorescence quenching of dye molecules near gold nanoparticles: Radiative and nonradiative effects. Phys. Rev. Lett. 89, 203002 (2002).

    Article  CAS  Google Scholar 

  14. Ipe, B. I. & Thomas, K. G. Investigations on nanoparticle-chromophore and interchromophore interactions in pyrene-capped gold nanoparticles. J. Phys. Chem. B 108, 13265–13272 (2004).

    Article  CAS  Google Scholar 

  15. Lakowicz, J. R. et al. Advances in surface-enhanced fluorescence. J. Fluorescence 14, 425–441 (2004).

    Article  CAS  Google Scholar 

  16. Levin, C. S. et al. Chain-length-dependent vibrational resonances in alkanethiol self-assembled monolayers observed on plasmonic nanoparticle substrates. Nano Lett. 6, 2617–2621 (2006).

    Article  CAS  Google Scholar 

  17. Kang, Y., Erickson, K. J. & Taton, T. A. Plasmonic nanoparticle chains via a morphological, sphere-to-string transition. J. Am. Chem. Soc. 127, 13800–13801 (2005).

    Article  CAS  Google Scholar 

  18. Atwater, H. A., Maier, S., Polman, A., Dionne, J. A. & Sweatlock, L. The new p-n junction: Plasmonics enables photonic access to the nanoworld. Mater. Res. Soc. Bull. 30, 385–389 (2005).

    Article  CAS  Google Scholar 

  19. Citrin, D. S. Coherent excitation transport in metal-nanoparticle chains. Nano Lett. 4, 1561–1565 (2004).

    Article  CAS  Google Scholar 

  20. Wei, Q. H., Su, K. H., Durant, S. & Zhang, X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett. 4, 1067–1071 (2004).

    Article  CAS  Google Scholar 

  21. Wang, G. & Murray, R. W. Controlled assembly of monolayer-protected gold clusters by dissolved DNA. Nano Lett. 4, 95–101 (2004).

    Article  CAS  Google Scholar 

  22. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  CAS  Google Scholar 

  23. Chen, S. et al. Amperometric hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase (HRP) on the layer-by-layer assembly films of gold colloidal nanoparticles and toluidine blue. Electroanalysis 18, 471–477 (2006).

    Article  CAS  Google Scholar 

  24. Westenhoff, S. & Kotov, N. A. Quantum dot on a rope. J. Am. Chem. Soc. 124, 2448–2449 (2002).

    Article  CAS  Google Scholar 

  25. Lee, J., Govorov, A. O. & Kotov, N. A. Nanoparticle assemblies with molecular springs: Nanoscale thermometer. Angew. Chem. Int. Edn 117, 7605–7608 (2005).

    Article  Google Scholar 

  26. Govorov, A. O. et al. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Lett. 6, 984–994 (2006).

    Article  CAS  Google Scholar 

  27. Yamamoto, Y. et al. Site-specific PEGylation of a lysine-deficient TNF-a with full bioactivity. Nature Biotechnol. 21, 546–552 (2003).

    Article  CAS  Google Scholar 

  28. Chapman, A. P. PEGylated antibodies and antibody fragments for improved therapy: A review. Adv. Drug Delivery Rev. 54, 531–545 (2002).

    Article  CAS  Google Scholar 

  29. Heller, D. A. et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006).

    Article  CAS  Google Scholar 

  30. Jana, N. R., Gearheart, L. & Murphy, C. J. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17, 6782–6786 (2001).

    Article  CAS  Google Scholar 

  31. Obare, S. O., Hollowell, R. E. & Murphy, C. J. Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18, 10407–10410 (2002).

    Article  CAS  Google Scholar 

  32. Zhu, T., Vasilev, K., Kreiter, M., Mittler, S. & Knoll, W. Surface modification of citrate-reduced colloidal gold nanoparticles with 2-mercaptosuccinic acid. Langmuir 19, 9518–9525 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. H. Bahng, Biomedical Engineering Department, University of Michigan, for useful discussion and assistance in biological experiments. The project was supported by NSF (N.A.K. and A.O.G.), DARPA, AFOSR, NIH (N.A.K.) and Ohio University (A.O.G.).

Author information

Authors and Affiliations

Authors

Contributions

N.A.K. and J.L. carried out the experimental work and bio-assembly, whereas A.O.G. and P.H. carried out the theoretical study and modelling.

Corresponding authors

Correspondence to Alexander O. Govorov or Nicholas A. Kotov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 1511 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Hernandez, P., Lee, J. et al. Exciton–plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nature Mater 6, 291–295 (2007). https://doi.org/10.1038/nmat1869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing