Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites

Abstract

Owing to the improvement of properties including conductivity, toughness and permeability, polymer nanocomposites are slated for applications ranging from membranes to fuel cells1,2. The enhancement of polymer properties by the addition of inorganic nanoparticles is a complex function of interfacial interactions, interfacial area and the distribution of inter-nanofiller distances. The latter two factors depend on nanofiller dispersion, making it difficult to develop a fundamental understanding of their effects on nanocomposite properties. Here, we design model poly(methyl methacrylate)–silica and poly(2-vinyl pyridine)–silica nanocomposites consisting of polymer films confined between silica slides. We compare the dependence of the glass-transition temperature (Tg) and physical ageing on the interlayer distance in model nanocomposites with the dependence of silica nanoparticle content in real nanocomposites. We show that model nanocomposites provide a simple way to gain insight into the effect of interparticle spacing on Tg and to predict the approximate ageing response of real nanocomposites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tg data from bulk polymer and polymer nanocomposites determined via fluorescence.
Figure 2: Deviations of Tg from Tg,bulk of ultrathin films supported on silica and ‘model’ nanocomposites.
Figure 3: Interlayer spacing (film thicknesses) in ‘model’ nanocomposites that yield the same Tg deviation as 0.4 vol% silica–PMMA and silica–P2VP nanocomposites.
Figure 4: Physical ageing of bulk polymer and polymer nanocomposites monitored by fluorescence.

Similar content being viewed by others

References

  1. Vaia, R. A. & Giannelis, E. P. Polymer nanocomposites: Status and opportunities. Mater. Res. Soc. Bull. 26, 394–401 (2001).

    Article  CAS  Google Scholar 

  2. Sanchez, C., Julian, B., Belleville, P. & Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005).

    Article  CAS  Google Scholar 

  3. Keddie, J. L., Jones, R. A. L. & Cory, R. A. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994).

    Article  CAS  Google Scholar 

  4. van Zanten, J. H., Wallace, W. E. & Wu, W. L. Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. Phys. Rev. E 53, R2053–R2056 (1996).

    Article  CAS  Google Scholar 

  5. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R. & Dutcher, J. R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996).

    Article  CAS  Google Scholar 

  6. Fryer, D. S. et al. Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34, 5627–5634 (2001).

    Article  CAS  Google Scholar 

  7. Grohens, Y., Hamon, L., Reiter, G., Soldera, A. & Holl, Y. Some relevant parameters affecting the glass transition of supported ultra-thin polymer films. Eur. Phys. J. E 8, 217–224 (2002).

    Article  CAS  Google Scholar 

  8. Park, C. H. et al. Thickness and composition dependence of the glass transition temperature in thin random copolymer films. Polymer 45, 4507–4513 (2004).

    Article  CAS  Google Scholar 

  9. Ellison, C. J., Kim, S. D., Hall, D. B. & Torkelson, J. M. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements. Eur. Phys. J. E 8, 155–166 (2002).

    Article  CAS  Google Scholar 

  10. Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nature Mater. 2, 695–700 (2003).

    Article  CAS  Google Scholar 

  11. Ellison, C. J., Mundra, M. K. & Torkelson, J. M. Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition-nanoconfinement effect and the cooperativity length scale. Macromolecules 38, 1767–1778 (2005).

    Article  CAS  Google Scholar 

  12. Mundra, M. K., Ellison, C. J., Behling, R. E. & Torkelson, J. M. Confinement, composition, and spin-coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene-containing random copolymers: sensing by intrinsic fluorescence. Polymer 47, 7747–7759 (2006).

    Article  CAS  Google Scholar 

  13. Sharp, J. S. & Forrest, J. A. Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys. Rev. Lett. 91, 235701 (2003).

    Article  CAS  Google Scholar 

  14. Roth, C. B. & Dutcher, J. R. Glass transition and chain mobility in thin polymer films. J. Electroanal. Chem. 584, 13–22 (2005).

    Article  CAS  Google Scholar 

  15. Alcoutlabi, M. & McKenna, G. B. Effects of confinement on material behaviour at the nanometer size scale. J. Phys. Condens. Matter 17, R461–R524 (2005).

    Article  CAS  Google Scholar 

  16. Ash, B. J., Schadler, L. S. & Siegel, R. W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater. Lett. 55, 83–87 (2002).

    Article  CAS  Google Scholar 

  17. Arrighi, V., McEwen, I. J., Qian, H. & Serrano Prieto, M. B. The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 44, 6259–6266 (2003).

    Article  CAS  Google Scholar 

  18. Sun, Y. Y., Zhang, Z. Q., Moon, K. S. & Wong, C. P. Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. B 42, 3849–3858 (2004).

    Article  CAS  Google Scholar 

  19. Berriot, J., Montes, H., Lequeux, F., Long, D. & Sotta, P. Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35, 9756–9762 (2002).

    Article  CAS  Google Scholar 

  20. Blum, F. D., Young, E. N., Smith, G. & Sitton, O. C. Thermal analysis of adsorbed poly(methyl methacrylate) on silica. Langmuir 22, 4741–4744 (2006).

    Article  CAS  Google Scholar 

  21. Rittigstein, P. & Torkelson, J. M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B 44, 2935–2943 (2006).

    Article  CAS  Google Scholar 

  22. Starr, F. W., Schroder, T. B. & Glotzer, S. C. Effects of a nanoscopic filler on the structure and dynamics of simulated polymer melt and the relationship to ultrathin films. Phys. Rev. E 64, 021802 (2001).

    Article  CAS  Google Scholar 

  23. Priestley, R. D., Broadbelt, L. J. & Torkelson, J. M. Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: Effects of attractive vs neutral polymer-substrate interactions measured by fluorescence. Macromolecules 38, 654–657 (2005).

    Article  CAS  Google Scholar 

  24. Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005).

    Article  CAS  Google Scholar 

  25. Huang, Y. & Paul, D. R. Physical aging of thin glassy polymer films monitored by optical properties. Macromolecules 39, 1554–1559 (2006).

    Article  CAS  Google Scholar 

  26. Kawana, S. & Jones, R. A. L. Effect of physical ageing in thin glassy polymer films. Eur. Phys. J. E 10, 223–230 (2003).

    Article  CAS  Google Scholar 

  27. Lu, H. B. & Nutt, S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36, 4010–4016 (2003).

    Article  CAS  Google Scholar 

  28. Bansal, A. et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater. 4, 693–698 (2005).

    Article  CAS  Google Scholar 

  29. Papakonstantopoulos, G. J., Yoshimoto, K., Doxastakis, M., Nealey, P. F. & de Pablo, J. J. Local mechanical properties of polymeric nanocomposites. Phys. Rev. E 72, 031801 (2005).

    Article  Google Scholar 

  30. Narayanan, R. A. et al. Dynamics and internal stresses at the nanoscale related to unique thermomechanical behavior in polymer nanocomposites. Phys. Rev. Lett 97, 075505 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF-MRSEC program at Northwestern University (grants DMR-0076097 and DMR-0520513), Northwestern University and a DFI fellowship (R.D.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Torkelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rittigstein, P., Priestley, R., Broadbelt, L. et al. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nature Mater 6, 278–282 (2007). https://doi.org/10.1038/nmat1870

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing