Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploration of nanostructured channel systems with single-molecule probes

Abstract

Molecular movement in confined spaces is of broad scientific and technological importance in areas ranging from molecular sieving and membrane separation to active transport through ion channels. Whereas measurements of ensemble diffusion provide information about the overall behaviour of the guest in a porous host, tracking individual molecules provides insight into both the heterogeneity and the mechanistic details of molecular diffusion as well as into the structure of the host. Here, we show how single dye molecules can be used as nanoscale probes to map out the structure of mesoporous silica channel systems prepared as thin films via cooperative self-assembly of surfactant molecules with polymerizable silicate species. The dye molecules act as beacons while they diffuse through the different structural phases of the host: the structure of the trajectories, the diffusivities and the orientation of single molecules are distinctive for molecules travelling in the lamellar and the hexagonal mesophases. These experiments reveal unprecedented details of the host structure, its domains and the accessibility as well as the connectivity of the channel system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample systems.
Figure 2: Single-molecule images and trajectories of the pure hexagonal and lamellar phases of the mesoporous hosts obtained by wide-field imaging.
Figure 3: Mean-square displacement as a function of time.
Figure 4: Diffusion of single molecules in the phase mixture.
Figure 5: Diffusion analysis of individual trajectories in the hexagonal phase of the mixture.

Similar content being viewed by others

References

  1. Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  2. Zhao, D. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  3. Choi, M. & Ryoo, R. Ordered nanoporous polymer-carbon composites. Nature Mater. 2, 473–476 (2003).

    Article  CAS  Google Scholar 

  4. Grosso, D. et al. Periodically ordered nanoscale islands and mesoporous films composed of nanocrystalline multimetallic oxides. Nature Mater. 3, 787–792 (2004).

    Article  CAS  Google Scholar 

  5. Sun, D. et al. Hexagonal nanoporous germanium through surfactant-driven self-assembly of Zintl clusters. Nature 441, 1126–1130 (2006).

    Article  CAS  Google Scholar 

  6. Trikalitis, P. N., Rangan, K. K., Bakas, T. & Kanatzidis, M. G. Varied pore organization in mesostructured semiconductors based on the [SnSe4]4− anion. Nature 410, 671–476 (2001).

    Article  CAS  Google Scholar 

  7. De Vos, D. E., Dams, M., Sels, B. F. & Jacobs, P. A. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. Chem. Rev. 102, 3615–3640 (2002).

    Article  CAS  Google Scholar 

  8. Billinge, S. J. L. et al. Mercury binding sites in thiol-functionalized mesostructured silica. J. Am. Chem. Soc. 127, 8492–8498 (2005).

    Article  CAS  Google Scholar 

  9. Rebbin, V., Schmidt, R. & Fröba, M. Spherical particles of phenylene-bridged periodic mesoporous organosilica for high-performance liquid chromatography. Angew. Chem. Int. Edn Engl. 45, 5210–5214 (2006).

    Article  CAS  Google Scholar 

  10. Cott, D. J. et al. Preparation of oriented mesoporous carbon nano-filaments within the pores of anodic alumina membranes. J. Am. Chem. Soc. 128, 3920–3921 (2006).

    Article  CAS  Google Scholar 

  11. Ye, B., Trudeau, M. L. & Antonelli, D. M. Observation of a double maximum in the dependence of conductivity on oxidation state in potassium fulleride nanowires supported by a mesoporous niobium oxide host lattice. Adv. Mater. 13, 561–565 (2001).

    Article  CAS  Google Scholar 

  12. Petkov, N., Stock, N. & Bein, T. Gold electroless reduction in nanosized channels of thiol-modified SBA-15 material. J. Phys. Chem. B 109, 10737–10743 (2005).

    Article  CAS  Google Scholar 

  13. Ryoo, R., Joo, S. H., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001).

    Article  CAS  Google Scholar 

  14. Lai, C.-Y. et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–4459 (2003).

    Article  CAS  Google Scholar 

  15. Roy, I. et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proc. Natl Acad. Sci. 102, 279–284 (2005).

    Article  CAS  Google Scholar 

  16. Terasaki, O. & Ohsuna, T. in Handbook of Zeolite Science and Technology (eds Auerbach, S. M., Carrado, K. A. & Dutta, P. K.) 291–315 (Dekker, New York, 2003).

    Google Scholar 

  17. Kukla, V. et al. NMR studies of single-file diffusion in unidimensional channel zeolites. Science 272, 702–704 (1996).

    Article  CAS  Google Scholar 

  18. Benes, N. E., Jobic, H. & Verweij, H. Quasi-elastic neutron scattering study of the mobility of methane in microporous silica. Micropor. Mesopor. Mater. 43, 147–152 (2001).

    Article  CAS  Google Scholar 

  19. Rigler, R., Mets, Ü., Widengren, J. & Kask, P. Fluorescence correlation spectroscopy with high count rate and low background: Analysis of translational diffusion. Eur. Biophys. J. 22, 169–175 (1993).

    Article  CAS  Google Scholar 

  20. Wirth, M. J., Swinton, D. J. & Ludes, M. D. Adsorption and diffusion of single molecules at chromatographic interfaces. J. Phys. Chem. B 107, 6258–6268 (2003).

    Article  CAS  Google Scholar 

  21. Bacia, K., Kim, S. A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nature Methods 3, 83–89 (2006).

    Article  CAS  Google Scholar 

  22. Fu, Y., Ye, F., Sanders, W. G., Collinson, M. M. & Higgins, D. A. Single molecule spectroscopy studies of diffusion in mesoporous silica thin films. J. Phys. Chem. B 110, 9164–9170 (2006).

    Article  CAS  Google Scholar 

  23. Werley, C. A. & Moerner, W. E. Single-molecule nanoprobes explore defects in spin-grown crystals. J. Phys. Chem. B 110, 18939–18944 (2006).

    Article  CAS  Google Scholar 

  24. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  25. Hellriegel, C. et al. Diffusion of single streptocyanine molecules in the nanoporous network of sol-gel glasses. J. Phys. Chem. B 108, 14699–14709 (2004).

    Article  CAS  Google Scholar 

  26. McCain, K. S., Hanley, D. C. & Harris, J. M. Single-molecule fluorescence trajectories for investigating molecular transport in thin silica sol-gel films. Anal. Chem. 75, 4351–4359 (2003).

    Article  CAS  Google Scholar 

  27. Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J. 22, 4656–4665 (2003).

    Article  CAS  Google Scholar 

  28. Seisenberger, G. et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294, 1929–1932 (2001).

    Article  CAS  Google Scholar 

  29. Jung, C. et al. A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J. Am. Chem. Soc. 128, 5283–5291 (2006).

    Article  CAS  Google Scholar 

  30. Brinker, C. J., Lu, Y., Sellinger, A. & Fan, H. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  31. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F. & Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).

    Article  CAS  Google Scholar 

  32. Hellriegel, C., Kirstein, J. & Bräuchle, C. Tracking of single molecules as a powerful method to characterise diffusivity of organic species in mesoporous materials. New J. Phys. 7, 1–14 (2005).

    Article  Google Scholar 

  33. Dickson, R. M., Norris, D. J. & Moerner, W. E. Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis. Phys. Rev. Lett. 81, 5322 (1998).

    Article  CAS  Google Scholar 

  34. Seebacher, C., Hellriegel, C., Bräuchle, C., Ganschow, M. & Wöhrle, D. Orientational behavior of single molecules in molecular sieves: A study of oxazine dyes in AlPO4-5 crystals. J. Phys. Chem. B 107, 5445–5452 (2003).

    Article  CAS  Google Scholar 

  35. Saxton, M. J. & Jacobson, K. Single-particle tracking: Applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  Google Scholar 

  36. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560 (1905).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Müllen (MPI für Polymerforschung, Mainz, Germany) for kindly providing the TDI dye, N. Rauhut for the assistance with the measurements and P. Schwaderer for the AFM data. This work was financially supported by the Sonderforschungsbereich SFB-486.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bräuchle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures and movie captions (PDF 442 kb)

Supplementary Information

Supplementary movie S1 segment 1 (AVI 3552 kb)

Supplementary Information

Supplementary movie S1 segment 2 (AVI 3443 kb)

Supplementary Information

Supplementary movie S2 (AVI 1818 kb)

Supplementary Information

Supplementary movie S3 (AVI 2771 kb)

Supplementary Information

Supplementary movie S4 (AVI 127 kb)

Supplementary Information

Supplementary movie S5 segment 1 (AVI 2911 kb)

Supplementary Information

Supplementary movie S5 segment 2 (AVI 2863 kb)

Supplementary Information

Supplementary movie S5 segment 3 (AVI 2662 kb)

Supplementary Information

Supplementary movie S6 (AVI 3100 kb)

Supplementary Information

Supplementary movie S7 (AVI 609 kb)

Supplementary Information

Supplementary movie S8 (AVI 1442 kb)

Supplementary Information

Supplementary movie S9 (AVI 2464 kb)

Supplementary Information

Supplementary movie S10 (AVI 2397 kb)

Supplementary Information

Supplementary movie S11 (AVI 2271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirstein, J., Platschek, B., Jung, C. et al. Exploration of nanostructured channel systems with single-molecule probes. Nature Mater 6, 303–310 (2007). https://doi.org/10.1038/nmat1861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing