Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical switching of the vortex core in a magnetic disk

Abstract

Amagnetic vortex is a curling magnetic structure realized in a ferromagnetic disk, which is a promising candidate for a memory cell for future non-volatile data-storage devices1. Thus, an understanding of the stability and dynamical behaviour of the magnetic vortex is a major requirement for developing magnetic data-storage technology. Since the publication of experimental proof for the existence of a nanometre-scale core with out-of-plane magnetization in a magnetic vortex2, the dynamics of vortices have been investigated intensively3,4,5,6,7,8,9,10. However, a way to electrically control the core magnetization, which is a key for constructing a vortex-core memory, has been lacking. Here, we demonstrate the electrical switching of the core magnetization by using the current-driven resonant dynamics of the vortex; the core switching is triggered by a strong dynamic field that is produced locally by a rotational core motion at a high speed of several hundred metres per second. Efficient switching of the vortex core without magnetic-field application is achieved owing to resonance. This opens up the potentiality of a simple magnetic disk as a building block for spintronic devices such as a memory cell where the bit data is stored as the direction of the nanometre-scale core magnetization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perspective view of the magnetization with a moving vortex structure.
Figure 2: Core dynamics under a.c. spin-polarized current.
Figure 3: MFM observation of electrical switching of the vortex core.
Figure 4: Switching probabilities as a function of excitation current frequency.

Similar content being viewed by others

References

  1. Bussmann, K., Prinz, G. A., Cheng, S.-F. & Wang, D. Switching of vertical giant magnetoresistance devices by current through the device. Appl. Phys. Lett. 75, 2476–2478 (1999).

    Article  CAS  Google Scholar 

  2. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  CAS  Google Scholar 

  3. Guslienko, K. Yu. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037–8039 (2002).

    Article  CAS  Google Scholar 

  4. Choe, S.-B. et al. Vortex core-driven magnetisation dynamics. Science 304, 420–422 (2004).

    Article  CAS  Google Scholar 

  5. Stoll, H. et al. High-resolution imaging of fast magnetisation dynamics in magnetic nanostructures. Appl. Phys. Lett. 84, 3328–3330 (2004).

    Article  CAS  Google Scholar 

  6. Novosad, V. et al. Magnetic vortex resonance in patterned ferromagnetic dots. Phys. Rev. B 72, 024455 (2005).

    Article  Google Scholar 

  7. Guslienko, K. Yu. et al. Magnetic vortex core dynamics in cylindrical ferromagnetic dots. Phys. Rev. Lett. 96, 067205 (2006).

    Article  Google Scholar 

  8. Shibata, J., Nakatani, Y., Tatara, G., Kohno, H. & Otani, Y. Current-induced magnetic vortex motion by spin-transfer torque. Phys. Rev. B 73, 020403 (2006).

    Article  Google Scholar 

  9. Ishida, T., Kimura, T. & Otani, Y. Current-induced vortex displacement and annihilation in a single permalloy disk. Phys. Rev. B 74, 014424 (2006).

    Article  Google Scholar 

  10. Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H. & Ono, T. Current-driven resonant excitation of magnetic vortices. Phys. Rev. Lett. 97, 107204 (2006).

    Article  Google Scholar 

  11. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  12. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  13. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  14. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  CAS  Google Scholar 

  15. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    Article  CAS  Google Scholar 

  16. Thiaville, A., Nakatani, Y., Miltat, J. & Vernier, N. Domain wall motion by spin-polarized current: A micromagnetic study. J. Appl. Phys. 95, 7049–7051 (2004).

    Article  CAS  Google Scholar 

  17. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  CAS  Google Scholar 

  18. Döring, W. On the inertia of walls between Weiss domains. Z. Naturforschg. a 3, 378 (1948).

    Google Scholar 

  19. Thiaville, A. & Nakatani, Y. in Spin Dynamics in Confined Magnetic Structures III (eds Hillebrands, B. & Thiaville, A.) (Springer, Berlin, 2006).

    Google Scholar 

  20. Feldtkeller, E. & Thomas, H. Structure and energy of Bloch lines in thin ferromagnetic films. Phys. Kondens. Mater. 4, 8 (1965).

    CAS  Google Scholar 

  21. Okuno, T. et al. MFM study of magnetic vortex cores in circular permalloy dots: Behavior in external field. J. Magn. Magn. Mater. 240, 1–6 (2002).

    Article  CAS  Google Scholar 

  22. Thiaville, A. et al. Micromagnetic study of Bloch-point-mediated vortex core reversal. Phys. Rev. B 67, 094410 (2003).

    Article  Google Scholar 

  23. Schryer, N. L. & Walker, L. R. The motion of 180 domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5420 (1974).

    Article  CAS  Google Scholar 

  24. Slonczewski, J. C. Theory of domain-wall motion in magnetic films and platelets. J. Appl. Phys. 44, 1759–1770 (1973).

    Article  CAS  Google Scholar 

  25. Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    Article  CAS  Google Scholar 

  26. Bass, J. & Pratt, W. P. Jr Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by MEXT Grants-in-Aid for Scientific Research in Priority Areas and JSPS Grants-in-Aid for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Ono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary discussion (PDF 82 kb)

Supplementary Information

Supplementary movie (MOV 3471 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Kasai, S., Nakatani, Y. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater 6, 270–273 (2007). https://doi.org/10.1038/nmat1867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1867

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing