Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peak effect versus skating in high-temperature nanofriction

Abstract

The physics of sliding nanofriction at high temperature near the substrate melting point, TM, is so far unexplored. We conducted simulations of hard tips sliding on a prototype non-melting surface, NaCl(100), revealing two distinct and opposite phenomena for ploughing and for grazing friction in this regime. We found a frictional drop close to TM for deep ploughing and wear, but on the contrary a frictional rise for grazing, wearless sliding. For both phenomena, we obtain a fresh microscopic understanding, relating the former to ‘skating’ through a local liquid cloud, and the latter to linear response properties of the free substrate surface. We argue that both phenomena occur more generally on surfaces other than NaCl and should be pursued experimentally. Most metals, in particular those possessing one or more close-packed non-melting surfaces, such as Pb, Al or Au(111), are likely to behave similarly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two different diamond tip apexes constructed for simulating ploughing and grazing friction.
Figure 2
Figure 3: Averaged ploughing frictional force 〈Fx〉 as a function of temperature.
Figure 4: At TM, a hard tip ploughing through solid NaCl(100) is surrounded by a local liquid cloud that moves with it.
Figure 5: Frictional force of a grazing tip on NaCl(100).
Figure 6: Dynamical surface atom structure factor of NaCl as a function of temperature for surface atoms alone.

Similar content being viewed by others

References

  1. Dowson, D., Taylor, C., Godet, M. & Berthe, D. Development in Numerical and Experimental Methods Applied to Tribology (Butterworths, London, 1984).

    Google Scholar 

  2. Bowden, F. P. & Tabor, D. Friction: An Introduction to Tribology (Doubleday, New York, 1973).

    Google Scholar 

  3. Krylov, S. Y., Jinesh, K. B., Valk, H., Dienwiebel, M. & Frenken, J. W. M. Thermally induced suppression of friction at the atomic scale. Phys. Rev. E 71, 065101 (2005).

    Article  Google Scholar 

  4. Hammerberg, J. E., Holian, B. L., Germann, T. C. & Ravelo, R. Nonequilibrium molecular dynamics simulations of metallic friction at Ta/Al and Cu/Ag interfaces. Metall. Mater. Trans. A 35, 2741–2745 (2004).

    Article  Google Scholar 

  5. Zhang, L. C. & Cheong, W. C. D. in High Pressure Surface Science and Engineering (eds Gogotsi, Y. & Domnich, V.) Ch. 2.2 (Institute of Physics, Bristol, 2004).

    Google Scholar 

  6. Tartaglino, U., Zykova-Timan, T., Ercolessi, F. & Tosatti, E. Melting and nonmelting of solid surfaces and nanosystems. Phys. Rep. 411, 291–321 (2005).

    Article  CAS  Google Scholar 

  7. Kuipers, L. & Frenken, J. Jump to contact, neck formation, and surface melting in the scanning tunneling. Phys. Rev. Lett. 70, 3907–3910 (1993).

    Article  CAS  Google Scholar 

  8. Tomagnini, O., Ercolessi, F. & Tosatti, E. Microscopic interaction between a gold tip and a Pb(110) surface. Surf. Sci. 287/288, 1041–1045 (1993).

    Article  Google Scholar 

  9. Zykova-Timan, T., Tartaglino, U., Ceresoli, D. & Tosatti, E. Why are alkali halide surfaces not wetted by their own melt? Phys. Rev. Lett. 94, 176105 (2005).

    Article  CAS  Google Scholar 

  10. Gnecco, E., Bennewitz, R. & Meyer, E. Abrasive wear on the atomic scale. Phys. Rev. Lett. 88, 215501 (2002).

    Article  CAS  Google Scholar 

  11. Fumi, F. G. & Tosi, M. P. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides. J. Phys. Chem. Solids 25, 45–52 (1964).

    Article  Google Scholar 

  12. Zykova-Timan, T., Ceresoli, D., Tartaglino, U. & Tosatti, E. Physics of solid and liquid alkali halide surfaces near the melting point. J. Chem. Phys. 123, 164701 (2005).

    Article  CAS  Google Scholar 

  13. Anwar, J., Frenkel, D. & Noro, M. G. Calculation of the melting point of NaCl by molecular simulation. J. Chem. Phys. 118, 728–735 (2003).

    Article  CAS  Google Scholar 

  14. Grange, G. & Mutaftschiev, B. Méthode de mesure de l’angle de contact à l’interface cristal-bain fondu. Surf. Sci. 47, 723–728 (1975).

    Article  CAS  Google Scholar 

  15. Persson, B. J. Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998).

    Book  Google Scholar 

  16. Levitas, V. I., Henson, B. F., Smilowitz, L. B. & Asay, B. W. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal. J. Phys. Chem. B 110, 10105–10119 (2006).

    Article  CAS  Google Scholar 

  17. Tartaglino, U. & Tosatti, E. Strain effects at solid surfaces near the melting point. Surf. Sci. 532–535, 623–627 (2003).

    Article  Google Scholar 

  18. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  19. Hansen, J. P. & McDonald, I. R. Theory of Simple Liquids Ch. 8 (Academic, London, 1986).

    Google Scholar 

  20. Granato, E., Ala-Nissila, T. & Ying, S. Anomalous sliding friction and peak effect near the flux lattice melting transition. Phys. Rev. B 62, 11834–11837 (2000).

    Article  CAS  Google Scholar 

  21. Ala-Nissila, T. & Ying, S. Microscopic theory of surface diffusion. Phys. Rev. B 42, 10264–10274 (1990).

    Article  CAS  Google Scholar 

  22. Tang, C., Ling, X., Bhattacharya, S. & Chaikin, P. Peak effect in superconductors: Melting of Larkin domains. Europhys. Lett. 35, 597–602 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by MIUR FIRB RBAU017S8 R004, FIRB RBAU01LX5H, and MIUR COFIN 2003 and 2004, as well as by INFM (Iniziativa trasversale calcolo parallelo). We acknowledge illuminating discussions with, and much help from, U. Tartaglino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tosatti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie 1 (AVI 2836 kb)

Supplementary Information

Supplementary movie 2 (AVI 2660 kb)

Supplementary Information

Supplementary movie 3 (AVI 2709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zykova-Timan, T., Ceresoli, D. & Tosatti, E. Peak effect versus skating in high-temperature nanofriction. Nature Mater 6, 230–234 (2007). https://doi.org/10.1038/nmat1836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing