Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides

Abstract

Ceramics destined for use in hostile environments such as nuclear reactors or waste immobilization must be highly durable and especially resistant to radiation damage effects. In particular, they must not be prone to amorphization or swelling. Few ceramics meet these criteria and much work has been devoted in recent years to identifying radiation-tolerant ceramics and the characteristics that promote radiation tolerance. Here, we examine trends in radiation damage behaviour for families of compounds related by crystal structure. Specifically, we consider oxides with structures related to the fluorite crystal structure. We demonstrate that improved amorphization resistance characteristics are to be found in compounds that have a natural tendency to accommodate lattice disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unit-cell drawings corresponding to the crystal structures of ideal and oxygen-deficient fluorite.
Figure 2: Selected TC phase diagrams9 in which various sesquioxides (A2O3) are mixed with the dioxide, zirconia (ZrO2).
Figure 3: Molecular statics calculations for the energy to form a cation antisite plus an anion Frenkel, in either an ordered A2Zr2O7 pyrochlore-phase (P) lattice or an ordered A4Zr3O12 δ-phase (δ) lattice.
Figure 4: GIXRD patterns obtained from various 4:3:12 compounds before and after irradiation with 300 keV Kr++ ions.

Similar content being viewed by others

References

  1. Weber, W. J. et al. Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J. Mater. Res. 13, 1434–1484 (1998).

    Article  CAS  Google Scholar 

  2. Wang, S. X. et al. Radiation stability of gadolinium zirconate: A waste form for plutonium disposition. J. Mater. Res. 14, 4470–4473 (1999).

    Article  CAS  Google Scholar 

  3. Sickafus, K. E. et al. Radiation tolerance of complex oxides. Science 289, 748–751 (2000).

    Article  CAS  Google Scholar 

  4. Degueldre, C. et al. Behavior of implanted xenon in yttria-stabilized zirconia as inert matrix of a nuclear fuel. J. Nucl. Mater. 289, 115–121 (2001).

    Article  CAS  Google Scholar 

  5. Ewing, R. C., Weber, W. J. & Lian, J. Nuclear waste disposal-pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and “minor” actinides. J. Appl. Phys. 95, 5949 (2004).

    Article  CAS  Google Scholar 

  6. Sickafus, K. E. et al. Los Alamos Series Report #LA-14205: Layered Atom Arrangements in Complex Materials (Los Alamos National Laboratory, Los Alamos, NM, 2006).

    Google Scholar 

  7. Subramanian, M. A., Aravamudan, G. & Subba Rao, G. V. Oxide pyrochlores—A review. Prog. Solid State Chem. 15, 55–143 (1983).

    Article  CAS  Google Scholar 

  8. Bevan, D. J. M. & Summerville, E. in Mixed Rare Earth Oxides (eds Gschneidner, K. A. J. & Eyring, L.) 401–524 (Handbook of the Physics and Chemistry of Rare Earths, Vol. 3, Elsevier Science, Amsterdam, 1979).

    Google Scholar 

  9. Ondik, H. M. & McMurdie, H. F. (eds) Phase Diagrams for Zirconium and Zirconia Systems (The American Ceramic Society, Westerville, 1998).

  10. Wyckoff, R. W. G. Crystal Structures: Volume 1 (Interscience, New York, 1960).

    Google Scholar 

  11. Nastasi, M. & Mayer, J. W. Thermodynamics and kinetics of phase transformations induced by ion irradiation. Mater. Sci. Rep. 6, 1–51 (1991).

    Article  Google Scholar 

  12. Minervini, L., Grimes, R. W. & Sickafus, K. E. Disorder in pyrochlore oxides. J. Am. Ceram. Soc. 83, 1873–1878 (2000).

    Article  CAS  Google Scholar 

  13. Lian, J. et al. The order-disorder transition in ion-irradiated pyrochlore. Acta Mater. 51, 1493–1502 (2003).

    Article  CAS  Google Scholar 

  14. Lian, J., Wang, L. M., Ewing, R. C., Yudintsev, S. V. & Stefanovsky, S. V. Ion-beam-induced amorphization and order-disorder transition in the murataite structure. J. Appl. Phys. 97, 113536 (2005).

    Article  Google Scholar 

  15. Sickafus, K. E. et al. Cation disorder in high dose, neutron-irradiated spinel. J. Nucl. Mater. 219, 128–134 (1995).

    Article  CAS  Google Scholar 

  16. Valdez, J. A., Tang, M. & Sickafus, K. E. Radiation damage effects in δ-Sc4Zr3O12 irradiated with Kr++ ions under cryogenic conditions. Nucl. Instrum. Methods B 250, 148–154 (2006).

    Article  CAS  Google Scholar 

  17. Lian, J. et al. Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore. Phys. Rev. B 66, 054108 (2002).

    Article  Google Scholar 

  18. Levin, E. M., Robbins, C. R. & McCurdie, H. F. (eds) Phase Diagrams for Ceramists (American Ceramic Society, Columbus, 1964).

  19. Lian, J. et al. Radiation-induced amorphization of rare-earth titanate pyrochlores. Phys. Rev. B 68, 134107 (2003).

    Article  Google Scholar 

  20. Lopato, L. M., Red’ko, V. P., Gerasimyuk, G. I. & Shevchenko, A. V. Synthesis and properties of M4Zr3O12 and M4Hf3O12 compounds (M-rare earth element). Neorg. Mater. 27, 1718–1722 (1991). (translation: Inorg. Mater. 27, 1445–1449 (1991)).

    CAS  Google Scholar 

  21. Devanathan, R. & Weber, W. J. Insights into the radiation response of pyrochlores from calculations of threshold displacement events. J. Appl. Phys. 98, 086110 (2005).

    Article  Google Scholar 

  22. Uberuaga, B. P. et al. Structure and mobility of defects formed from collision cascades in MgO. Phys. Rev. Lett. 92, 5505 (2004).

    Article  Google Scholar 

  23. Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  24. Cleave, A. R. Atomic Scale Simulations for Waste Form Applications. Thesis (Imperial College, London) (2006).

  25. Catlow, C. R. A. & Mackrodt, W. C. Computer Simulation of Solids (Springer, Berlin, 1982).

    Book  Google Scholar 

  26. Bogicevic, A. & Wolverton, C. Nature and strength of defect interactions in cubic stabilized zirconia. Phys. Rev. B 67, 024106 (2003).

    Article  Google Scholar 

  27. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  28. Rushton, M. J. D., Grimes, R. W., Stanek, C. R. & Owens, S. Predicted pyrochlore to fluorite disordered temperature for A2Zr2O7 compositions. J. Mater. Res. 19, 1603–1604 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the US Department of Energy (DOE), Office of Basic Energy Sciences (OBES), Division of Materials Sciences and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Experiments (sample fabrication, irradiation and characterization) carried out by K.E.S., J.A.V., M.T., M.I. and S.M.C; atomistic modelling carried out by A.C., R.W.G., C.R.S. and B.P.U.

Corresponding author

Correspondence to Kurt E. Sickafus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sickafus, K., Grimes, R., Valdez, J. et al. Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nature Mater 6, 217–223 (2007). https://doi.org/10.1038/nmat1842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing