Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films

Abstract

The ordered cocrystallization of nanoparticles into binary superlattices enables close contact of nanocrystals with distinct physical properties, providing a route to ‘metamaterials’ design. Here we present the first electronic measurements of multicomponent nanocrystal solids composed of PbTe and Ag2Te, demonstrating synergistic effects leading to enhanced p-type conductivity. First, syntheses of size-tuneable PbTe and Ag2Te nanocrystals are presented, along with deposition as thin-film nanocrystal solids, whose electronic transport properties are characterized. Next, assembly of PbTe and Ag2Te nanocrystals into AB binary nanocrystal superlattices is demonstrated. Furthermore, binary composites of varying PbTe–Ag2Te stoichiometry (1:1 and 5:1) are prepared and electronically characterized. These composites show strongly enhanced (conductance 100-fold increased in 1:1 composites over the sum of individual conductances of single-component PbTe and Ag2Te films) p-type electronic conductivity. This observation, consistent with the role of Ag2Te as a p-type dopant in bulk PbTe, demonstrates that nanocrystals can behave as dopants in nanostructured assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of PbTe nanocrystals.
Figure 2: Evolution of particle size and shape in Ag2Te nanocrystals.
Figure 3: Assembly of binary nanocrystal superlattices consisting of PbTe and Ag2Te.
Figure 4: Electronic characterization of single-component nanocrystal films.
Figure 5: Characterization of binary PbTe–Ag2Te nanocrystal films.

Similar content being viewed by others

References

  1. Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).

    Article  CAS  Google Scholar 

  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  3. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  4. Shevchenko, E. V., Talapin, D. V., Murray, C. B. & O’Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 128, 3620–3637 (2006).

    Article  CAS  Google Scholar 

  5. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    Article  CAS  Google Scholar 

  6. Dalpian, G. M. & Chelikowsky, J. R. Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 96, 226802 (2006).

    Article  Google Scholar 

  7. Koole, R., Liljeroth, P., de Mello Donega, C., Vanmaekelbergh, D. & Meijerink, A. Electronic coupling and exciton energy transfer in CdTe quantum-dot molecules. J. Am. Chem. Soc. 128, 10436–10441 (2006).

    Article  CAS  Google Scholar 

  8. Rowe, D. M. (ed.) in CRC Handbook of Thermoelectrics (CRC Press, New York, 1995).

  9. Orihashi, M., Noda, Y., Kaibe, T. H. & Nishida, I. A. Evaluation of thermoelectric properties of impurity-doped PbTe. J. Jpn Inst. Met. 61, 241–246 (1997).

    Article  CAS  Google Scholar 

  10. Noda, Y., Orihashi, M. & Nishida, A. Thermoelectric properties of p-type lead telluride doped with silver or potassium. J. Jpn Inst. Met. 61, 180–183 (1997).

    Article  CAS  Google Scholar 

  11. Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A. & George, S. M. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303, 989–990 (2004).

    Article  CAS  Google Scholar 

  12. Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Article  Google Scholar 

  13. Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002).

    Article  CAS  Google Scholar 

  14. Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 303, 777–778 (2004).

    Article  CAS  Google Scholar 

  15. Hsu, K. F. et al. Cubic AgPbmSbTe2+m bulk thermoelectric materials with a high figure of merit. Science 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  16. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  17. Urban, J. J., Talapin, D. V., Shevchenko, E. V. & Murray, C. B. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. J. Am. Chem. Soc. 128, 3248–3255 (2006).

    Article  CAS  Google Scholar 

  18. Stoeva, S., Klabunde, K. J., Sorensen, C. M. & Dragieva, I. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J. Am. Chem. Soc. 124, 2305–2311 (2002).

    Article  CAS  Google Scholar 

  19. Lin, X. M., Jaeger, H. M., Sorensen, C. M. & Klabunde, K. J. Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J. Phys. Chem. B 105, 3353–3357 (2001).

    Article  CAS  Google Scholar 

  20. Dalven, R. Fundamental optical absorption in B-silver telluride. Phys. Rev. Lett. 16, 311–312 (1966).

    Article  CAS  Google Scholar 

  21. Brus, L. E. Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).

    Article  CAS  Google Scholar 

  22. Saunders, A. E. & Korgel, B. A. Observation of an AB phase in bidisperse nanocrystal superlattices. ChemPhysChem 6, 61–65 (2005).

    Article  CAS  Google Scholar 

  23. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p- channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  24. Yu, D., Wang, C., Wehrenberg, B. L. & Guyot-Sionnest, P. Variable range hopping mechanism in semiconductor nanocrystal solids. Phys. Rev. Lett. 92, 216802 (2004).

    Article  Google Scholar 

  25. Ben-Chorin, M., Moeller, F. & Koch, F. Nonlinear electrical transport in porous silicon. Phys. Rev. B. 49, 2981–2984 (1994).

    Article  CAS  Google Scholar 

  26. Ristein, J. Surface transfer doping of semiconductors. Science 313, 1057–1058 (2006).

    Article  CAS  Google Scholar 

  27. Strobel, P., Riedel, M., Ristein, J. & Ley, L. Surface transfer doping of diamond. Nature 430, 439–441 (2004).

    Article  CAS  Google Scholar 

  28. Zhang, P. et al. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439, 703–706 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the ONR (N00014-02-1-0867) for funding and support.

Author information

Authors and Affiliations

Authors

Contributions

J.J.U. executed all of the materials syntheses, superlattice assembly, transport measurements and data analysis presented here. D.V.T. and E.V.S. provided general assistance and project suggestions. C.R.K. provided transport equipment and technical advice. C.B.M. provided general assistance, advice and project planning.

Corresponding author

Correspondence to Jeffrey J. Urban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information; Figures S1, S2, S3, S4, S5, S6 and S7 (PDF 709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, J., Talapin, D., Shevchenko, E. et al. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nature Mater 6, 115–121 (2007). https://doi.org/10.1038/nmat1826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1826

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing