Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polyprotein of GB1 is an ideal artificial elastomeric protein

Abstract

Naturally occurring elastomeric proteins function as molecular springs in their biological settings and show mechanical properties that underlie the elasticity of natural adhesives1, cell adhesion proteins2 and muscle proteins3. Constantly subject to repeated stretching–relaxation cycles, many elastomeric proteins demonstrate remarkable consistency and reliability in their mechanical performance3,4. Such properties had hitherto been observed only in naturally evolved elastomeric proteins. Here we use single-molecule atomic force microscopy techniques to demonstrate that an artificial polyprotein made of tandem repeats of non-mechanical protein GB1 has mechanical properties that are comparable or superior to those of known elastomeric proteins. In addition to its mechanical stability5, we show that GB1 polyprotein shows a unique combination of mechanical features, including the fastest folding kinetics measured so far for a tethered protein, high folding fidelity, low mechanical fatigue during repeated stretching–relaxation cycles and ability to fold against residual forces. These fine features make GB1 polyprotein an ideal artificial protein-based molecular spring that could function in a challenging working environment requiring repeated stretching–relaxation. This study represents a key step towards engineering artificial molecular springs with tailored nanomechanical properties for bottom-up construction of new devices and materials6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polyprotein (GB1)8 has significant mechanical stability.
Figure 2: The fast folding kinetics of GB1.
Figure 3: GB1 can fold in the presence of residual forces.
Figure 4: Polyprotein (GB1)8 does not show noticeable mechanical fatigue.

Similar content being viewed by others

References

  1. Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  2. Oberhauser, A. F., Marszalek, P. E., Erickson, H. P. & Fernandez, J. M. The molecular elasticity of the extracellular matrix protein tenascin. Nature 393, 181–185 (1998).

    Article  CAS  Google Scholar 

  3. Labeit, S. & Kolmerer, B. Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293–296 (1995).

    Article  CAS  Google Scholar 

  4. Bullard, B. et al. The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proc. Natl Acad. Sci. USA 103, 4451–4456 (2006).

    Article  CAS  Google Scholar 

  5. Cao, Y., Lam, C., Wang, M. & Li, H. Nonmechanical protein can have significant mechanical stability. Angew. Chem. Int. Edn Engl. 45, 642–645 (2006).

    Article  CAS  Google Scholar 

  6. Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nature Mater. 2, 278–283 (2003).

    Article  CAS  Google Scholar 

  7. Tatham, A. S. & Shewry, P. R. Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem. Sci. 25, 567–571 (2000).

    Article  CAS  Google Scholar 

  8. Vogel, V. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35, 459–488 (2006).

    Article  CAS  Google Scholar 

  9. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  10. Carrion-Vazquez, M. et al. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog. Biophys. Mol. Biol. 74, 63–91 (2000).

    Article  CAS  Google Scholar 

  11. Li, H. et al. Reverse engineering of the giant muscle protein titin. Nature 418, 998–1002 (2002).

    Article  CAS  Google Scholar 

  12. Kellermayer, M. S., Smith, S. B., Bustamante, C. & Granzier, H. L. Mechanical fatigue in repetitively stretched single molecules of titin. Biophys. J. 80, 852–863 (2001).

    Article  CAS  Google Scholar 

  13. Yang, G. et al. Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proc. Natl Acad. Sci. USA 97, 139–144 (2000).

    Article  CAS  Google Scholar 

  14. Brockwell, D. J. et al. Mechanically unfolding the small, topologically simple protein L. Biophys. J. 89, 506–519 (2005).

    Article  CAS  Google Scholar 

  15. Best, R. B., Li, B., Steward, A., Daggett, V. & Clarke, J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 81, 2344–2356 (2001).

    Article  CAS  Google Scholar 

  16. Cecconi, C., Shank, E. A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    Article  CAS  Google Scholar 

  17. Dietz, H. & Rief, M. Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc. Natl Acad. Sci. USA 101, 16192–16197 (2004).

    Article  CAS  Google Scholar 

  18. Ainavarapu, S. R., Li, L., Badilla, C. L. & Fernandez, J. M. Ligand binding modulates the mechanical stability of dihydrofolate reductase. Biophys. J. 89, 3337–3344 (2005).

    Article  CAS  Google Scholar 

  19. Junker, J. P., Hell, K., Schlierf, M., Neupert, W. & Rief, M. Influence of substrate binding on the mechanical stability of mouse dihydrofolate reductase. Biophys. J. 89, L46–L48 (2005).

    Article  CAS  Google Scholar 

  20. Gronenborn, A. M. et al. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253, 657–661 (1991).

    Article  CAS  Google Scholar 

  21. Li, P. C. & Makarov, D. E. Ubiquitin-like protein domains show high resistance to mechanical unfolding similar to that of the 127 domain in titin: Evidence from simulations. J. Phys. Chem. B 108, 745–749 (2004).

    Article  CAS  Google Scholar 

  22. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  Google Scholar 

  23. Carrion-Vazquez, M. et al. The mechanical stability of ubiquitin is linkage dependent. Nature Struct. Biol. 10, 738–743 (2003).

    Article  CAS  Google Scholar 

  24. Chyan, C. L. et al. Reversible mechanical unfolding of single ubiquitin molecules. Biophys. J. 87, 3995–4006 (2004).

    Article  CAS  Google Scholar 

  25. Schwaiger, I., Schleicher, M., Noegel, A. A. & Rief, M. The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments. EMBO Rep. 6, 46–51 (2005).

    Article  CAS  Google Scholar 

  26. Park, S. H., Shastry, M. C. & Roder, H. Folding dynamics of the B1 domain of protein G explored by ultrarapid mixing. Nature Struct. Biol. 6, 943–947 (1999).

    Article  CAS  Google Scholar 

  27. Marko, J. F. & Siggia, E. D. Stretching DNA. Macromolecules 28, 8759–8770 (1995).

    Article  CAS  Google Scholar 

  28. Kellermayer, M. S., Smith, S. B., Granzier, H. L. & Bustamante, C. Folding–unfolding transitions in single titin molecules characterized with laser tweezers. Science 276, 1112–1116 (1997).

    Article  CAS  Google Scholar 

  29. Oberhauser, A. F., Marszalek, P. E., Carrion-Vazquez, M. & Fernandez, J. M. Single protein misfolding events captured by atomic force microscopy. Nature Struct. Biol. 6, 1025–1028 (1999).

    Article  CAS  Google Scholar 

  30. Wright, C. F., Teichmann, S. A., Clarke, J. & Dobson, C. M. The importance of sequence diversity in the aggregation and evolution of proteins. Nature 438, 878–881 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs programme and the start-up fund from the University of British Columbia. Y.C. is partially supported by the Laird Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information; Figures S1 and S2 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Li, H. Polyprotein of GB1 is an ideal artificial elastomeric protein. Nature Mater 6, 109–114 (2007). https://doi.org/10.1038/nmat1825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing