Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lattice dynamics of the Zn–Mg–Sc icosahedral quasicrystal and its Zn–Sc periodic 1/1 approximant

Abstract

Quasicrystals are long-range-ordered materials that lack translational invariance, so the study of their physical properties remains a challenging problem. Here, we have carried out inelastic-X-ray- and neutron-scattering experiments on single-grain samples of the Zn–Mg–Sc icosahedral quasicrystal and of the Zn–Sc periodic cubic 1/1 approximant, with the aim of studying the respective influence of the local order and of the long-range order (periodic or quasiperiodic) on lattice dynamics. Besides the overall similarities and the existence of a pseudo-gap in the transverse dispersion relation, marked differences are observed, the pseudo-gap being larger and better defined in the approximant than in the quasicrystal. This can be qualitatively explained using the concept of a pseudo-Brillouin-zone in the quasicrystal. These results are compared with simulations on atomic models and using oscillating pair potentials, and the simulations reproduce in detail the experimental results. This paves the way for a detailed understanding of the physics of quasicrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cluster structure and diffraction pattern of the i-ZnMgSc QC and its 1/1 Zn–Sc approximant.
Figure 2: Response function measured in transverse geometry by inelastic neutron scattering for the ZnSc 1/1 approximant and the ZnMgSc QC.
Figure 3: Longitudinal excitations: comparison between the measured dispersion relation and the simulated response function S(Q,E).
Figure 4: Transverse excitations: comparison between the measured dispersion relation and the simulated response function S(Q,E).
Figure 5: Comparison between the experiment and the simulation for a few representative constant-Q energy scans.
Figure 6: Fitted pair potential used in the simulation.

Similar content being viewed by others

References

  1. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  CAS  Google Scholar 

  2. Tsai, A. P., Guo, J. Q., Abe, E., Takakura, H. & Sato, T. J. A stable binary quasicrystal. Nature 408, 537–538 (2000).

    Article  CAS  Google Scholar 

  3. Kaneko, Y., Arichika, Y. & Ishimasa, T. Icosahedral quasicrystal in annealed Zn–Mg–Sc alloys. Phil. Mag. Lett. 81, 777–787 (2001).

    Article  CAS  Google Scholar 

  4. Gomez, C. P. & Lidin, S. Structure of Ca13Cd76: A novel approximant to the MCd5. 7 quasicrystals (M.Ca, Yb). Angew. Chem. Int. 40, 4037–4039 (2001).

    Article  CAS  Google Scholar 

  5. Gomez, C. P. & Lidin, S. Comparative structural study of the disordered MCd/sub 6/ quasicrystal approximants. Phys. Rev. B 68, 024203 (2003).

    Article  Google Scholar 

  6. Takakura, H., Gomez, C. P., Yamamoto, A., de Boissieu, M. & Tsai, A. P. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nature Mater. 6, 58–63 (2007).

    Article  CAS  Google Scholar 

  7. Janssen, T., Chapuis, G. & de Boissieu, M. Aperiodic Crystals. From Modulated Phases to Quasicrystals (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  8. Fujiwara, T. & Ishii, Y. Physics of Quasicrystals (Elsevier Science, 2007, in the press).

  9. Hasegawa, J., Tamura, R., Takeuchi, S., Tokiwa, K. & Watanabe, T. Electronic transport of the icosahedral Zn–Mg–Sc quasicrystal and its 2/1 and 1/1 cubic approximants. J. Non-Cryst. Solids 334, 368–371 (2004).

    Article  Google Scholar 

  10. Kuo, Y. K. et al. Thermoelectric properties of binary Cd–Yb quasicrystals and Cd6Yb. J. Appl. Phys. 95, 1900–1905 (2004).

    Article  CAS  Google Scholar 

  11. Kuo, Y. K. et al. Thermal and electrical transport properties of Ag–In–Yb quasicrystals: An experimental study. Phys. Rev. B 72, 054202 (2005).

    Article  Google Scholar 

  12. Tamura, R. et al. Electrical properties of the binary icosahedral quasicrystal and its approximant in the Cd–Yb system. Mater. Sci. Eng. 375–377, 1002–1005 (2004).

    Article  Google Scholar 

  13. Tamura, R. et al. Comparative study of the binary icosahedral quasicrystal Cd5.7Yb and its crystalline approximant Cd6Yb by low-temperature ultrahigh-resolution photoemission spectroscopy. Phys. Rev. B 65, 224207 (2002).

    Article  Google Scholar 

  14. Tamura, R. et al. Experimental evidence for the p–d hybridization in the Cd–Ca quasicrystal: Origin of the pseudogap. Phys. Rev. Lett. 92, 146402 (2004).

    Article  CAS  Google Scholar 

  15. Tamura, R., Araki, T. & Takeuchi, S. Is the negative temperature coefficient of the resistivity of the quasicrystals due to chemical disorder? Phys. Rev. Lett. 90, 226401 (2003).

    Article  CAS  Google Scholar 

  16. de Boissieu, M., Francoual, S., Kaneko, Y. & Ishimasa, T. Diffuse scattering and phason fluctuations in the Zn–Mg–Sc icosahedral quasicrystal and its Zn–Sc periodic approximant. Phys. Rev. Lett. 95, 105503 (2005).

    Article  CAS  Google Scholar 

  17. Ishii, Y. & Fujiwara, T. Hybridization mechanism for cohesion of Cd-based quasicrystals. Phys. Rev. Lett. 87, 206408 (2001).

    Article  CAS  Google Scholar 

  18. Quilichini, M. & Janssen, T. Phonons in quasicrystals. Rev. Mod. Phys. 69, 277 (1997).

    Article  CAS  Google Scholar 

  19. Smith, A. P. & Ashcroft, N. W. Pseudopotentials and quasicrystals. Phys. Rev. Lett. 59, 1365–1368 (1987).

    Article  CAS  Google Scholar 

  20. Lu, J. P. & Birman, J. Acoustic-wave propagation in quasiperiodic, incommensurate, and random systems. Phys. Rev. B 38, 8067–8074 (1988).

    Article  CAS  Google Scholar 

  21. Niizeki, K. & Akamuatsu, T. The reciprocal space properties of the electronic wave functions of the Penrose lattice. J. Phys. Condens. Matter 2, 7043–7047 (1990).

    Article  Google Scholar 

  22. Niizeki, K. & Akamatsu, T. Special points in the reciprocal space of an icosahedral quasi-crystal and the quasi-dispersion relation of electrons. J. Phys. Condens. Matter 2, 2759–2771 (1990).

    Article  Google Scholar 

  23. Quilichini, M., Heger, G., Hennion, B., Lefebvre, S. & Quivy, A. Inelastic neutron scattering study of acoustic modes in a monodomain AlCuFe quasicrystal. J. Phys. France 51, 1785–1790 (1990).

    Article  CAS  Google Scholar 

  24. Goldman, A. I. et al. Phonons in icosahedral and cubic Al–Li–Cu. Phys. Rev. B 45, 10280–10291 (1992).

    Article  CAS  Google Scholar 

  25. de Boissieu, M. et al. Dynamics of the AlPdMn icosahedral phase. J. Phys. Condens. Matter 5, 4945–4966 (1993).

    Article  CAS  Google Scholar 

  26. Boudard, M. et al. Optic modes in the AlPdMn icosahedral phase. J. Phys. Condens. Matter 7, 7299–7308 (1995).

    Article  CAS  Google Scholar 

  27. Shibata, K. et al. Dynamics of the ZnMgY icosahedral phase. J. Phys. Condens. Matter 14, 1847–1863 (2002).

    Article  CAS  Google Scholar 

  28. de Boissieu, M., Currat, R., Francoual, S. & Kats, E. Sound-mode broadening in quasicrystals: A simple phenomenological model. Phys. Rev. B 69, 54205 (2004).

    Article  Google Scholar 

  29. Cahn, J. W., Shechtman, D. & Gratias, D. Indexing of icosahedral quasiperiodic crystals. J. Mater. Res. 1, 13–26 (1986).

    Article  CAS  Google Scholar 

  30. Benoit, C., Poussigue, G. & Azougarh, A. Neutron scattering by phonons in quasi-crystals. J. Phys. Condens. Matter 2, 2519–2536 (1990).

    Article  Google Scholar 

  31. Tamura, R. et al. Universal low-temperature phase transition in Zn- and Cd-based crystalline approximants. Phys. Rev. B 71, 092203 (2005).

    Article  Google Scholar 

  32. Ishimasa, T., Kasano, Y., Tachibana, A., Kashimoto, S. & Osaka, K. Low temperature phase of the Zn–Sc approximant. Phil. Mag. 87, 2887–2897 (2007).

    Article  CAS  Google Scholar 

  33. Lin, Q. S. & Corbett, J. D. The 1/1 and 2/1 approximants in the ScMgZn quasicrystal system: Triacontahedral clusters as fundamental building blocks. J. Am. Chem. Soc. 128, 13268–13273 (2006).

    Article  CAS  Google Scholar 

  34. Henley, C. L. Cell geometry for cluster-based quasicrystal models. Phys. Rev. B 43, 993–1020 (1991).

    Article  CAS  Google Scholar 

  35. Mihalkovič, M. & Widom, M. Canonical cell model of cadmium-based icosahedral alloys. Phil. Mag. 86, 519–527 (2006).

    Article  Google Scholar 

  36. Rog, T., Murzyn, K., Hinsen, K. & Kneller, G. R. A program package for a neutron scattering oriented analysis of molecular dynamics simulations. J. Comput. Chem. 24, 657–667 (2003).

    Article  CAS  Google Scholar 

  37. Janot, C. & de-Boissieu, M. Quasicrystals as a hierarchy of clusters. Phys. Rev. Lett. 72, 1674–1677 (1994).

    Article  CAS  Google Scholar 

  38. Duval, E., Saviot, L., Mermet, A. & Murray, D. B. Continuum elastic sphere vibrations as a model for low lying optical modes in icosahedral quasicrystals. J. Phys. Condens. Matter 17, 3559–3565 (2005).

    Article  CAS  Google Scholar 

  39. Janot, C. Conductivity in quasicrystals via hierarchically variable-range hopping. Phys. Rev. B 181–191 (1996).

    Article  CAS  Google Scholar 

  40. Zoorob, M. E., Charlton, M. D. B., Parker, G. J., Baumberg, J. J. & Netti, M. C. Complete photonic bandgaps in 12-fold symmetric quasicrystals. Nature 404, 740–743 (2000).

    Article  CAS  Google Scholar 

  41. Lai, Y., Zhang, X. D. & Zhang, Z. Q. Large sonic band gaps in 12-fold quasicrystals. J. Appl. Phys. 91, 6191–6193 (2002).

    Article  CAS  Google Scholar 

  42. Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V. & Thompson, J. R. Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B 56, 15081–15089 (1997).

    Article  CAS  Google Scholar 

  43. Chernikov, M. A., Bianchi, A. & Ott, H. R. Low-temperature thermal-conductivity of icosahedral Al70Mn9Pd21 . Phys. Rev. B 51, 153–158 (1995).

    Article  CAS  Google Scholar 

  44. Smontara, A. et al. Complex epsilon-phases in the Al–Pd–transition-metal systems: Towards a combination of an electrical conductor with a thermal insulator. J. Alloys Compounds (2007, in the press).

  45. Kalugin, P. A., Chernikov, M. A., Bianchi, A. & Ott, H. R. Structural scattering of phonons in quasicrystals. Phys. Rev. B 53, 14145–14151 (1996).

    Article  CAS  Google Scholar 

  46. Takeuchi, T., Nagasako, N., Asahi, R. & Mizutani, U. Extremely small thermal conductivity of the Al-based Mackay-type 1/1-cubic approximants. Phys. Rev. B 74, 054206 (2006).

    Article  Google Scholar 

  47. Hamelin, B. & Bastie, P. A new hard X-ray diffractometer (100–400 keV) for bulk crystalline analysis. Applications for non-destructive investigation. Proc. SPIE 4786, 29–39 (2002).

    Article  CAS  Google Scholar 

  48. Baron, A. Q. R. et al. An X-ray scattering beamline for studying dynamics. J. Phys. Chem. Solids 61, 461–465 (2000).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the LLB, the ILL and the Spring-8 facilities for the allocation of beam time. We thank Y. Kaneko for his help in sample preparation. Part of the work has been initiated within the European Complex Metallic Alloy Network of Excellence. M.M. has been supported by a CNRS grant during his stay at the SIMAP, and by the Slovak grant agency APVV-0413-06. M.d.B. acknowledges the financial support of the Tohoku University during his stay at the IMRAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc de Boissieu.

Supplementary information

Supplementary Information

Supplementary information and figures S1, S2 (PDF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boissieu, M., Francoual, S., Mihalkovič, M. et al. Lattice dynamics of the Zn–Mg–Sc icosahedral quasicrystal and its Zn–Sc periodic 1/1 approximant. Nature Mater 6, 977–984 (2007). https://doi.org/10.1038/nmat2044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2044

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing