Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete composition tunability of InGaN nanowires using a combinatorial approach

Abstract

The III nitrides have been intensely studied in recent years because of their huge potential for everything from high-efficiency solid-state lighting and photovoltaics to high-power and temperature electronics1,2,3. In particular, the InGaN ternary alloy is of interest for solid-state lighting and photovoltaics because of the ability to tune the direct bandgap of this material from the near-ultraviolet to the near-infrared region. In an effort to synthesize InGaN nitride, researchers have tried many growth techniques4,5,6,7,8,9,10,11,12,13. Nonetheless, there remains considerable difficulty in making high-quality InGaN films and/or freestanding nanowires with tunability across the entire range of compositions. Here we report for the first time the growth of single-crystalline InxGa1−xN nanowires across the entire compositional range from x=0 to 1; the nanowires were synthesized by low-temperature halide chemical vapour deposition9 and were shown to have tunable emission from the near-ultraviolet to the near-infrared region. We propose that the exceptional composition tunability is due to the low process temperature and the ability of the nanowire morphology to accommodate strain-relaxed growth14, which suppresses the tendency toward phase separation that plagues the thin-film community.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Wire morphology and XRD at varying InGaN composition.
Figure 3: TEM characterization of the InGaN nanowires.
Figure 4: Optical characterization of the InGaN nanowires.

Similar content being viewed by others

References

  1. Schubert, E. F. & Kim, J. K. Solid-state light sources getting smart. Science 308, 1274–1278 (2005).

    Article  CAS  Google Scholar 

  2. Wu, J. et al. Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 94, 6477–6482 (2003).

    Article  CAS  Google Scholar 

  3. Kung, P. & Razeghi, M. III-Nitride wide bandgap semiconductors: A survey of the current status and future trends of the material and device technology. Opto-Electron. Rev. 8, 201–239 (2000).

    CAS  Google Scholar 

  4. Schenk, H. P. D. et al. Indium incorporation above 800 C during metalorganic vapor phase epitaxy of InGaN. Appl. Phys. Lett. 75, 2587–2589 (1999).

    Article  CAS  Google Scholar 

  5. Shan, W. et al. Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition. J. Appl. Phys. 84, 4452–4458 (1998).

    Article  CAS  Google Scholar 

  6. Shimizu, M., Hiramatsu, K. & Sawaki, N. Metalorganic vapor phase epitaxy growth of (InxGa1−xN/GaN)n layered structures and reduction of indium droplets. J. Cryst. Growth 145, 209–213 (1994).

    Article  CAS  Google Scholar 

  7. Yoshimoto, N., Matsuoka, T., Sasaki, T. & Katsui, A. Photoluminescence of indium gallium nitride films grown at high temperature by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 59, 2251–2253 (1991).

    Article  CAS  Google Scholar 

  8. Wu, J. et al. Small band gap bowing in In1−xGaxN alloys. Appl. Phys. Lett. 80, 4741–4743 (2002).

    Article  CAS  Google Scholar 

  9. Takahashi, N., Matsumoto, R., Koukitu, A. & Seki, H. Vapor-phase epitaxy of InxGa1−xN using chloride sources. J. Cryst. Growth 189–190, 37–41 (1998).

    Article  Google Scholar 

  10. Davydov, V. Y. et al. Band gap of hexagonal InN and InGaN alloys. Phys. Status Solidi B 234, 787–795 (2002).

    Article  CAS  Google Scholar 

  11. Morkoc, H. Nitride Semiconductors and Devices (Springer, Berlin, 1999).

    Book  Google Scholar 

  12. Perkins, N. R. et al. Growth of thick GaN films by halide vapor phase epitaxy. Proc. Electrochem. Soc. 96-5, 336–341 (1996).

    CAS  Google Scholar 

  13. Lu, D. et al. Dynamic scaling of the growth process of GaN thin films deposited on sapphire substrates by HVPE. Phys. Lett. A 327, 78–82 (2004).

    Article  CAS  Google Scholar 

  14. Liliental-Weber, Z. et al. Compositional modulation in InxGa1−xN: TEM and X-ray studies. J. Electron Microscopy 54, 243–250 (2005).

    CAS  Google Scholar 

  15. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

    Article  CAS  Google Scholar 

  16. Sun, Y., Cho, Y.-H., Kim, H.-M. & Kang, T. W. High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays. Appl. Phys. Lett. 87, 093115 (2005).

    Article  Google Scholar 

  17. Ertekin, E., Greaney, P. A., Chrzan, D. C. & Sands, T. D. Equilibrium limits of coherency in strained nanowire heterostructures. J. Appl. Phys. 97, 114325 (2005).

    Article  Google Scholar 

  18. Fuhrmann, D. et al. Optimization scheme for the quantum efficiency of GaInN-based green light-emitting diodes. Appl. Phys. Lett. 88, 071105 (2006).

    Article  Google Scholar 

  19. Fuhrmann, D. et al. Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters. Phys. Status Solidi C 3, 1966–1969 (2006).

    Article  CAS  Google Scholar 

  20. Qian, F., Gradecak, S., Li, Y., Wen, C.-Y. & Lieber, C. M. Core/Multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5, 2287–2291 (2005).

    Article  CAS  Google Scholar 

  21. Kim, H.-M. et al. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4, 1059–1062 (2004).

    Article  CAS  Google Scholar 

  22. Kim, H.-M. et al. Formation of InGaN nanorods with indium mole fractions by hydride vapor phase epitaxy. Phys. Status Solidi B 241, 2802–2805 (2004).

    Article  CAS  Google Scholar 

  23. Kumagai, Y., Takemoto, K., Hasegawa, T., Koukitu, A. & Seki, H. Thermodynamics on tri-halide vapor-phase epitaxy of GaN and InxGa1−xN using GaCl3 and InCl3 . J. Cryst. Growth 231, 57–67 (2001).

    Article  CAS  Google Scholar 

  24. Scholz, F. et al. Low pressure MOVPE of GaN and GaInN/GaN heterostructures. J. Cryst. Growth 170, 321–324 (1997).

    Article  CAS  Google Scholar 

  25. Doppalapudi, D., Basu, S. N., Ludwig, K. F. Jr & Moustakas, T. D. Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy. J. Appl. Phys. 84, 1389–1395 (1998).

    Article  CAS  Google Scholar 

  26. Yang, B. et al. Structural and optical properties of GaN layers directly grown on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy. Mater. Sci. Forum 264–268, 1235–1238 (1998).

    Article  Google Scholar 

  27. Snyder, R. L., Fiala, J. & Bunge, H. J. (eds) Defect and Microstructure Analysis by Diffraction (Int. Union Crystallogr. Monogr. Crystallogr., Vol. 10, Oxford Univ. Press, Oxford, 1999).

  28. Mattila, T. & Zunger, A. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys. J. Appl. Phys. 85, 160–167 (1999).

    Article  CAS  Google Scholar 

  29. Ho, I. H. & Stringfellow, G. B. Solid phase immiscibility in GaInN. Appl. Phys. Lett. 69, 2701–2703 (1996).

    Article  CAS  Google Scholar 

  30. Caetano, C., Teles, L. K., Marques, M., Dal Pino, A. Jr & Ferreira, L. G. Phase stability, chemical bonds, and gap bowing of InxGa1−xN alloys: Comparison between cubic and wurtzite structures. Phys. Rev. B 74, 045215 (2006).

    Article  Google Scholar 

  31. Liliental-Weber, Z. et al. Relaxation of InGaN thin layers observed by X-ray and transmission electron microscopy studies. J. Electron. Mater. 30, 439–444 (2001).

    Article  CAS  Google Scholar 

  32. Stach, E. A. et al. Watching GaN nanowires grow. Nano Lett. 3, 867–869 (2003).

    Article  CAS  Google Scholar 

  33. Waltereit, P. et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000).

    Article  CAS  Google Scholar 

  34. Shubina, T. V. et al. Mie resonances, infrared emission, and the band gap of InN. Phys. Rev. Lett. 92, 117407 (2004).

    Article  CAS  Google Scholar 

  35. Wu, J. et al. Effects of the narrow band gap on the properties of InN. Phys. Rev. B 66, 201403 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Department of Energy and DARPA-UPR. Work at the Lawrence Berkeley National Laboratory was supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the US Department of Energy. We thank T. Umbach, P. Pauzauskie and S.-Y. Bae for discussion, and the National Center for Electron Microscopy for the use of microscope facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 1869 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuykendall, T., Ulrich, P., Aloni, S. et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Mater 6, 951–956 (2007). https://doi.org/10.1038/nmat2037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing