Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Broad-wavelength-range chemically tunable block-copolymer photonic gels

Abstract

Responsive photonic crystals have been developed for chemical sensing using the variation of optical properties due to interaction with their environment1,2,3,4. Photonic crystals with tunability in the visible or near-infrared region are of interest for controlling and processing light for active components of display, sensory or telecommunication devices. Here, we report a hydrophobic block–hydrophilic polyelectrolyte block polymer that forms a simple one-dimensional periodic lamellar structure. This results in a responsive photonic crystal that can be tuned via swelling of the hydrophilic layers by contact with a fluid reservoir. The glassy hydrophobic layer forces expansion of the hydrophilic layer along the layer normal, yielding extremely large optical tunability through changes in both layer thickness and index of refraction. Polyelectrolyte polymers are known to be highly responsive to a range of stimuli5,6. We show very large reversible optical changes due to variation of the salt concentration of a water reservoir. These one-dimensional Bragg stacks reflect incident light from the ultraviolet–visible region to the near-infrared region (λpeak=350–1,600 nm) with over a 575% change in the position of the stop band. Our work demonstrates the extremely high responsivity possible for polyelectrolyte-based photonic materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the structure of photonic gel film and the tuning mechanism.
Figure 2: Photonic gel film characterization.
Figure 4: Tuning by salt concentration.
Figure 3: Effect of crosslinking on stop-band position.

References

  1. Weissman, J. M., Sunkara, H. B., Tse, A. S. & Asher, S. A. Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274, 959–963 (1996).

    Article  CAS  Google Scholar 

  2. Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

    Article  CAS  Google Scholar 

  3. Lin, V. S. Y. et al. A porous silicon-based optical interferometric biosensor. Science 278, 840–843 (1997).

    Article  CAS  Google Scholar 

  4. Li, Y. Y. et al. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045–2047 (2003).

    Article  CAS  Google Scholar 

  5. Li, Y. & Tanaka, T. Phase transitions of gels. Annu. Rev. Mater. Sci. 22, 243–277 (1992).

    Article  Google Scholar 

  6. Tanaka, T. Gels. Sci. Am. 244, 124–136 (1981).

    Article  CAS  Google Scholar 

  7. Gu, Z.-Z., Fujishima, A. & Sato, O. Photochemically tunable colloidal crystals. J. Am. Chem. Soc. 122, 12387–12388 (2000).

    Article  CAS  Google Scholar 

  8. Foulger, S. H. et al. Photonic bandgap composites. Adv. Mater. 13, 1898–1901 (2001).

    Article  CAS  Google Scholar 

  9. Debord, J. D. & Lyon, L. A. Thermoresponsive photonic crystals. J. Phys. Chem. B 104, 6327–6331 (2000).

    Article  CAS  Google Scholar 

  10. Ozaki, M., Shimoda, Y., Kasano, M. & Yoshino, K. Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv. Mater. 14, 514–518 (2002).

    Article  CAS  Google Scholar 

  11. Gu, Z.-Z., Iyoda, T., Fujishima, A. & Sato, O. Photo-reversible regulation of optical stop bands. Adv. Mater. 13, 1295–1298 (2001).

    Article  CAS  Google Scholar 

  12. Hu, Z., Lu, X. & Gao, J. Hydrogel opals. Adv. Mater. 13, 1708–1712 (2001).

    Article  CAS  Google Scholar 

  13. Fudouzi, H. & Xia, Y. Photonic papers and inks: Color writing with colorless materials. Adv. Mater. 15, 892–896 (2003).

    Article  CAS  Google Scholar 

  14. Busch, K. & John, S. Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum. Phys. Rev. Lett. 83, 967–970 (1999).

    Article  CAS  Google Scholar 

  15. Xu, X., Majetich, S. A. & Asher, S. A. Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals. J. Am. Chem. Soc. 124, 13864–13868 (2002).

    Article  CAS  Google Scholar 

  16. Hikmet, R. A. M. & Polesso, R. Patterned multicolor switchable cholesteric liquid crystal gels. Adv. Mater. 14, 502–504 (2002).

    Article  CAS  Google Scholar 

  17. Kramer, R. M., Crookes-Goodson, W. J. & Naik, R. R. The self-organizing properties of squid reflectin protein. Nature Mater. 6, 533–538 (2007).

    Article  CAS  Google Scholar 

  18. Valkama, S. et al. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nature Mater. 3, 872–876 (2004).

    Article  CAS  Google Scholar 

  19. Urbas, A. et al. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 12, 812–814 (2000).

    Article  CAS  Google Scholar 

  20. Deng, T., Chen, C., Honeker, C. & Thomas, E. L. Two-dimensional block copolymer photonic crystals. Polymer 44, 6549–6553 (2003).

    Article  CAS  Google Scholar 

  21. Urbas, A. M., Maldovan, M., DeRege, P. & Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).

    Article  CAS  Google Scholar 

  22. Bockstaller, M. R., Lapetnikov, Y., Margel, S. & Thomas, E. L. Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J. Am. Chem. Soc. 125, 5276–5277 (2003).

    Article  CAS  Google Scholar 

  23. Osuji, C. et al. Temperature-dependent photonic bandgap in a self-assembled hydrogen-bonded liquid-crystalline diblock copolymer. Adv. Funct. Mater. 12, 753–758 (2002).

    Article  CAS  Google Scholar 

  24. Arsenault, A. C. et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nature Mater. 5, 179–184 (2006).

    Article  CAS  Google Scholar 

  25. Xia, J., Ying, Y. & Foulger, S. H. Electric-field-induced rejection-wavelength tuning of photonic-bandgap composites. Adv. Mater. 17, 2463–2467 (2005).

    Article  CAS  Google Scholar 

  26. Starodoubtsev, S. G., Khokhlov, A. R., Sokolov, E. L. & Chu, B. Evidence for polyelectrolyte/ionomer behavior in the collapse of polycationic gels. Macromolecules 28, 3930–3936 (1995).

    Article  CAS  Google Scholar 

  27. Ohmine, I. & Tanaka, T. Salt effects on the phase transition of ionic gels. J. Chem. Phys. 77, 5725–5729 (1982).

    Article  CAS  Google Scholar 

  28. Temelkuran, B., Thomas, E. L., Joannopoulos, J. D. & Fink, Y. Low-loss infrared dielectric material system for broadband dual-range omnidirectional reflectivity. Opt. Lett. 26, 1370–1372 (2001).

    Article  CAS  Google Scholar 

  29. Pendry, J. B. & MacKinnon, A. Calculation of photon dispersion relations. Phys. Rev. Lett. 69, 2772–2775 (1992).

    Article  CAS  Google Scholar 

  30. Hajduk, D. A. et al. Stability of the perforated layer (PL) phase in diblock copolymer melts. Macromolecules 30, 3788–3795 (1997).

    Article  CAS  Google Scholar 

  31. Constantin, D. & Oswald, P. Diffusion coefficients in a lamellar lyotropic phase: Evidence for defects connecting the surfactant structure. Phys. Rev. Lett. 85, 4297–4300 (2000).

    Article  CAS  Google Scholar 

  32. Rancon, Y. & Charvolin, J. Fluctuations and phase transformations in a lyotropic liquid crystal. J. Phys. Chem. 92, 6339–6344 (1988).

    Article  CAS  Google Scholar 

  33. Thomas, E. L., Anderson, D. M., Henkee, C. S. & Hoffman, D. Periodic area-minimizing surfaces in block copolymers. Nature 334, 598–601 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Muthukumar for useful discussions. This work was primarily supported by a grant from DARPA and further supported by a Division of Materials Research Polymer Program NSF grant DMR-0308133 and by the US Army Research Office through ISN, under contract DAAD-19-02-D-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin L. Thomas.

Supplementary information

Supplementary Information

Supplementary figures S1-S3 (PDF 5007 kb)

Supplementary Information

Supplementary video S1 (MOV 1958 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Y., Walish, J., Gorishnyy, T. et al. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nature Mater 6, 957–960 (2007). https://doi.org/10.1038/nmat2032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing