Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries

Abstract

In the search for new positive-electrode materials for lithium-ion batteries, recent research has focused on nanostructured lithium transition-metal phosphates that exhibit desirable properties such as high energy storage capacity combined with electrochemical stability1,2. Only one member of this class—the olivine LiFePO4 (ref. 3)—has risen to prominence so far, owing to its other characteristics, which include low cost, low environmental impact and safety. These are critical for large-capacity systems such as plug-in hybrid electric vehicles. Nonetheless, olivine has some inherent shortcomings, including one-dimensional lithium-ion transport and a two-phase redox reaction that together limit the mobility of the phase boundary4,5,6,7. Thus, nanocrystallites are key to enable fast rate behaviour8,9. It has also been suggested that the long-term economic viability of large-scale Li-ion energy storage systems could be ultimately limited by global lithium reserves, although this remains speculative at present. (Current proven world reserves should be sufficient for the hybrid electric vehicle market, although plug-in hybrid electric vehicle and electric vehicle expansion would put considerable strain on resources and hence cost effectiveness.) Here, we report on a sodium/lithium iron phosphate, A2FePO4F (A=Na, Li), that could serve as a cathode in either Li-ion or Na-ion cells. Furthermore, it possesses facile two-dimensional pathways for Li+ transport, and the structural changes on reduction–oxidation are minimal. This results in a volume change of only 3.7% that—unlike the olivine—contributes to the absence of distinct two-phase behaviour during redox, and a reversible capacity that is 85% of theoretical.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XRD patterns and structures of the pristine (Na2FePO4F) and oxidized material (NaFePO4F).
Figure 2: Electron microscopy analysis of Na2FePO4F.
Figure 4: Electrochemical studies of A2FePO4F.
Figure 3: XRD patterns of Na2FePO4F, Na1.5FePO4F and NaFePO4F.

References

  1. Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  2. Herle, P. S., Ellis, B. & Nazar, L. F. Nanonetwork conduction in olivine phosphates. Nature Mater. 3, 147–152 (2004).

    Article  CAS  Google Scholar 

  3. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  4. Maxisch, T., Zhou, F. & Ceder, G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 73, 104301 (2006).

    Article  Google Scholar 

  5. Delacourt, C., Poizot, P., Tarascon, J. M. & Masquelier, C. The existence of a temperature-driven solid solution in LixFePO4 . Nature Mater. 4, 254–260 (2005).

    Article  CAS  Google Scholar 

  6. Yamada, A. et al. Room temperature miscibility gap in LixFePO4 . Nature Mater. 5, 357–360 (2006).

    Article  CAS  Google Scholar 

  7. Ellis, B., Perry, L. K., Ryan, D. H. & Nazar, L. F. Small polaron hopping in LixFePO4 solid solutions: Coupled lithium-ion and electron mobility. J. Am. Chem. Soc. 128, 11416–11422 (2006).

    Article  CAS  Google Scholar 

  8. Delacourt, C., Poizot, P., Levasseur, S. & Masquelier, C. Size effects on carbon-free LiFePO4 powders: The key to superior energy density. Electrochem. Solid-State Lett. 9, A352–A355 (2006).

    Article  CAS  Google Scholar 

  9. Meethong, N., Huang, H.-Y., Carter, W. C. & Chiang, Y.-M. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4 . Electrochem. Solid-State Lett. 10, A134–A138 (2007).

    Article  CAS  Google Scholar 

  10. Yin, S. C., Edwards, R., Taylor, N., Herle, P. S. & Nazar, L. F. Dimensional reduction: Synthesis and structure of layered Li5M(PO4)2F2 (M=V, Cr). Chem. Mater. 18, 1745–1752 (2006).

    Article  CAS  Google Scholar 

  11. Dutreilh, M., Chevalier, C., El-Ghozzi, C. M. & Avignant, D. Synthesis and crystal structure of a new lithium nickel fluorophosphate Li2[NiF(PO4)] with an ordered mixed anionic framework. J. Solid State Chem. 142, 1–5 (1999).

    Article  CAS  Google Scholar 

  12. Okada, S., Ueno, M., Uebou, Y. & Yamaki, J. Electrochemical properties of a new lithium cobalt fluorophosphate Li2[CoF(PO4)]. Abstract # 301, IMLB-12 (2004).

  13. Barker, J., Saidi, M. Y. & Swoyer, J. L. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. Electrochem. Solid-State Lett. 6, A1–A4 (2003).

    Article  CAS  Google Scholar 

  14. Barker, J., Gover, R. K. B., Burns, P. & Bryan, A. J. Hybrid-ion. A lithium-ion cell based on a sodium insertion material. Electrochem. Solid-State Lett. 9, A190–A192 (2006).

    Article  CAS  Google Scholar 

  15. Coetzer, J. A new high energy density battery system. J. Power Sources 18, 377–380 (1986).

    Article  CAS  Google Scholar 

  16. Stevens, D. A. & Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147, 1271–1273 (2000).

    Article  CAS  Google Scholar 

  17. Stevens, D. A. & Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148, A803–A811 (2001).

    Article  CAS  Google Scholar 

  18. Kabalov, Y. K., Simonov, M. A. & Belov, N. V. Crystal structure of basic iron phosphate (Na2Fe[PO4]OH). Dokl. Akad. Nauk SSSR 215, 850–853 (1974).

    CAS  Google Scholar 

  19. Sanz, F., Parada, C. & Ruiz-Valero, C. Crystal growth, crystal structure and magnetic properties of disodium cobalt fluorophosphate. J. Mater. Chem. 11, 208–211 (2001).

    Article  CAS  Google Scholar 

  20. Yakubovich, O. V., Karimova, O. V. & Mel’nikov, O. K. The mixed anionic framework in the structure Na2MnF(PO4). Acta Crystallogr. C 53, 395–397 (1997).

    Article  Google Scholar 

  21. Rastsvetaeva, R. K., Maksimov, B. A. & Timofeeva, V. A. Crystal structure of a new Na,Fe-phosphate Na5Fe(PO4)2F2 . Dokl. Akad. Nauk DAKNE 350, 499–502 (1996).

    CAS  Google Scholar 

  22. Le Meins, J.-M., Crosnier-Lopez, M. P., Hemon-Ribaud, A. & Courbion, G. Phase transitions in the Na3M2(PO4)2F3 family: Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 148, 260–277 (1999).

    Article  CAS  Google Scholar 

  23. Doeff, M. M., Wilcox, J. D., Kostecki, R. & Lau, G. Optimization of carbon coatings on LiFePO4 . J. Power Sources 163, 180–184 (2006).

    Article  CAS  Google Scholar 

  24. Yin, S. C., Grondey, H., Strobel, P. & Nazar, L. F. Electrochemical structure-property relationships in Li3−xV2(PO4)3 . J. Am. Chem. Soc. 125, 326–327 (2003).

    Article  CAS  Google Scholar 

  25. Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3 (X=P, As). J. Solid State Chem. 135, 228–234 (1998).

    Article  CAS  Google Scholar 

  26. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.F.N. gratefully acknowledges the financial support of NSERC through its Discovery and Strategic programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures and data (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, B., Makahnouk, W., Makimura, Y. et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nature Mater 6, 749–753 (2007). https://doi.org/10.1038/nmat2007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing