Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Femtosecond modification of electron localization and transfer of angular momentum in nickel

Abstract

The rapidly increasing information density required of modern magnetic data storage devices raises the question of the fundamental limits in bit size and writing speed. At present, the magnetization reversal of a bit can occur as quickly as 200 ps (ref. 1). A fundamental limit has been explored by using intense magnetic-field pulses of 2 ps duration leading to a non-deterministic magnetization reversal2. For this process, dissipation of spin angular momentum to other degrees of freedom on an ultrafast timescale is crucial2. An even faster regime down to 100 fs or below might be reached by non-thermal control of magnetization with femtosecond laser radiation3. Here, we show that an efficient novel channel for angular momentum dissipation to the lattice can be opened by femtosecond laser excitation of a ferromagnet. For the first time, the quenching of spin angular momentum and its transfer to the lattice with a time constant of 120±70 fs is determined unambiguously with X-ray magnetic circular dichroism. We report the first femtosecond time-resolved X-ray absorption spectroscopy data over an entire absorption edge, which are consistent with an unexpected increase in valence-electron localization during the first 120±50 fs, possibly providing the driving force behind femtosecond spin–lattice relaxation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the pump–probe set-up.
Figure 2: Femtosecond X-ray absorption spectra.
Figure 3: Femtosecond evolution of Ni electronic and magnetic structure.
Figure 4: Schematic diagram of electronic structure changes.

Similar content being viewed by others

References

  1. Gerrits, Th., van den Berg, H. A. M., Hohlfeld, J., Bär, L. & Rasing, Th. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002).

    Article  CAS  Google Scholar 

  2. Tudosa, I. et al. The ultimate speed of magnetic switching in granular recording media. Nature 428, 831–833 (2004).

    Article  CAS  Google Scholar 

  3. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  CAS  Google Scholar 

  4. Beaurepaire, E., Merle, J.-C., Daunoise, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  5. Vaterlaus, A., Beutler, T., Guarisco, D., Lutz, M. & Meier, F. Spin-lattice relaxation in ferromagnets studied by time-resolved spin-polarized photoemission. Phys. Rev. B 46, 5280–5286 (1992).

    Article  CAS  Google Scholar 

  6. Koopmans, B., Ruigrok, J. J. M., Longa, F. D. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005).

    Article  CAS  Google Scholar 

  7. Einstein, A. & de Haas, W. J. Experimenteller Nachweis der Ampèreschen Molekülströme. Verhandl. Deut. Phys. Ges. 17, 152–170 (1915).

    Google Scholar 

  8. Hübner, W. & Bennemann, K. H. Simple theory for spin-lattice relaxation in metallic rare-earth ferromagnets. Phys. Rev. B 53, 3422–3427 (1996).

    Article  Google Scholar 

  9. Scholl, A., Baumgarten, L., Jacquemin, R. & Eberhardt, W. Ultrafast spin dynamics of ferromagnetic thin films observed by fs spin-resolved two-photon photoemission. Phys. Rev. Lett. 79, 5146–5149 (1997).

    Article  CAS  Google Scholar 

  10. Rhie, H.-S., Dürr, H. A. & Eberhardt, W. Femtosecond electron and spin dynamics in Ni/W(110) films. Phys. Rev. Lett. 90, 247201 (2003).

    Article  Google Scholar 

  11. Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: Magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    Article  CAS  Google Scholar 

  12. Zhang, G. P. & Hübner, W. Laser induced ultrafast demagnetization in ferromagnetic metals. Phys. Rev. Lett. 85, 3025–3028 (2000).

    Article  CAS  Google Scholar 

  13. Bonn, M. et al. Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    Article  CAS  Google Scholar 

  14. Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287–289 (2003).

    Article  CAS  Google Scholar 

  15. Melnikov, A. et al. Coherent optical phonons and parametrically coupled magnons induced by femtosecond laser excitation of the Gd(0001) surface. Phys. Rev. Lett. 91, 227403 (2003).

    Article  CAS  Google Scholar 

  16. Schoenlein, R. W. et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000).

    Article  CAS  Google Scholar 

  17. Cavalleri, A. et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 067405 (2005).

    Article  CAS  Google Scholar 

  18. Holldack, K., Kachel, T., Khan, S., Mitzner, R. & Quast, T. Characterization of laser-electron interaction at the BESSY II femtoslicing source. Phys. Rev. ST Accel. Beams 8, 040704 (2005).

    Article  Google Scholar 

  19. Holldack, K., Khan, S., Mitzner, R. & Quast, T. Femtosecond terahertz radiation from femtoslicing at BESSY. Phys. Rev. Lett. 96, 054801 (2006).

    Article  CAS  Google Scholar 

  20. Johansson, B. & Mårtensson, N. Core-level binding-energy shifts for the metallic elements. Phys. Rev. B 21, 4427–4457 (1980).

    Article  CAS  Google Scholar 

  21. Huang, D. J. et al. Orbital ordering in La0.5Sr1.5MnO4 studied by soft X-ray linear dichroism. Phys. Rev. Lett. 92, 087202 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F.M.F. de Groot for valuable and stimulating discussions. We are indebted to the BESSY staff for the enthusiastic help and support during the construction and commissioning of the femtoslicing facility. Work is supported by the Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie, by the Land Berlin and by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Dürr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures and references (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamm, C., Kachel, T., Pontius, N. et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nature Mater 6, 740–743 (2007). https://doi.org/10.1038/nmat1985

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing