Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrogen multicentre bonds

Abstract

The concept of a chemical bond stands out as a major development in the process of understanding how atoms are held together in molecules and solids. Lewis’ classical picture of chemical bonds as shared-electron pairs1 evolved to the quantum-mechanical valence-bond and molecular-orbital theories2,3, and the classification of molecules and solids in terms of their bonding type: covalent, ionic, van der Waals and metallic. Along with the more complex hydrogen bonds4 and three-centre bonds5,6, they form a paradigm within which the structure of almost all molecules and solids can be understood. Here, we present evidence for hydrogen multicentre bonds—a generalization of three-centre bonds—in which a hydrogen atom equally bonds to four or more other atoms. When substituting for oxygen in metal oxides, hydrogen bonds equally to all the surrounding metal atoms, becoming fourfold coordinated in ZnO, and sixfold coordinated in MgO. These multicentre bonds are remarkably strong despite their large hydrogen–metal distances. The calculated local vibration mode frequency in MgO agrees with infrared spectroscopy measurements7. Multicoordinated hydrogen also explains the dependence of electrical conductivity on oxygen partial pressure, resolving a long-standing controversy on the role of point defects in unintentional n-type conductivity of ZnO (refs 8–10).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupling between the H 1s orbital and the Zn 4s ‘dangling bonds’ (Zn dbs) to form the hydrogen multicentre bond in ZnO.
Figure 2: Calculated DOS of hydrogen in the multicentre bond configuration HO in ZnO and MgO.
Figure 3: Three-dimensional visualization of the hydrogen multicentre bonds in ZnO and MgO.
Figure 4: Formation energy of substitutional hydrogen in ZnO and MgO.

Similar content being viewed by others

References

  1. Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916).

    Article  CAS  Google Scholar 

  2. Pauling, L. The Nature of the Chemical Bond 3rd edn (Cornell Univ. Press, New York, 1960).

    Google Scholar 

  3. Burdett, J. Chemical Bonds: A Dialog (Wiley, Chichester, 1997).

    Google Scholar 

  4. Jeffrey, G. A. An Introduction to Hydrogen Bonding (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  5. Lipscomb, W. N. Boron Hydrides (Benjamin, New York, 1963).

    Google Scholar 

  6. Bartell, L. S. & Carrol, B. L. Electron-diffraction study of diborane and deuterodiborane. J. Chem. Phys. 42, 1135–1139 (1965).

    Article  CAS  Google Scholar 

  7. González, R., Vergara, I., Caceres, D. & Chen, Y. Role of hydrogen and lithium impurities in radiation damage in neutron-irradiated MgO single crystals. Phys. Rev. B 65, 224108 (2002).

    Article  Google Scholar 

  8. Kröger, F. A. The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1974).

    Google Scholar 

  9. Look, D. C., Hemsky, J. W. & Sizelove, J. R. Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, 2552–2555 (1999).

    Article  CAS  Google Scholar 

  10. Tomlins, G. W., Routbort, J. L. & Mason, T. O. Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal ZnO. J. Appl. Phys. Rev. 87, 117–123 (2000).

    Article  CAS  Google Scholar 

  11. Cotton, F. A., Wilkinson, G., Murillo, C. A. & Bochmann, M. Advanced Inorganic Chemistry 6th edn (Wiley, New York, 1999).

    Google Scholar 

  12. Morrison, R. T. & Boyd, R. N. Organic Chemistry 5th edn (Allyn and Bacon, Boston, 1987).

    Google Scholar 

  13. Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y. & Pantelides, S. T. Theory of hydrogen diffusion and reactions in crystalline silicon. Phys. Rev. B 39, 10791–10808 (1989).

    Article  CAS  Google Scholar 

  14. Blöchl, P. E. First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys. Rev. B 62, 6158–6179 (2000).

    Article  Google Scholar 

  15. Van de Walle, C. G. & Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003).

    Article  CAS  Google Scholar 

  16. Kang, J., Lee, E.-C., Chang, K. J. & Jin, Y.-G. H-related defect complexes in HfO2: A model for positive fixed charge defects. Appl. Phys. Lett. 84, 3894–3896 (2004).

    Article  CAS  Google Scholar 

  17. Bau, R. et al. Five-coordinate hydrogen: Neutron diffraction analysis of the hydrido cluster complex [H2Rh13(CO)24]3−. Science 275, 1099–1102 (1997).

    Article  CAS  Google Scholar 

  18. Janotti, A. & Van de Walle, C. G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005).

    Article  Google Scholar 

  19. Kuklja, M. M. et al. Ab initio and semiempirical calculations of H centers in MgO crystals. Phys. Rev. B 59, 1885–1890 (1999).

    Article  CAS  Google Scholar 

  20. Van de Walle, C. G. Hydrogen as a cause of doping in ZnO. Phys. Rev. Lett. 85, 1012–1015 (2000).

    Article  CAS  Google Scholar 

  21. Cox, S. F. J. et al. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601–2604 (2001).

    Article  CAS  Google Scholar 

  22. Hofmann, D. M. et al. Hydrogen: A relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88, 045504 (2002).

    Article  Google Scholar 

  23. Shi, G. A. et al. Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005).

    Article  Google Scholar 

  24. Jokela, S. J. & McCluskey, M. D. Structure and stability of O–H donors in ZnO from high-pressure and infrared spectroscopy. Phys. Rev. B 72, 113201 (2005).

    Article  Google Scholar 

  25. Thomas, D. G. & Lander, J. J. Hydrogen as a donor in zinc oxide. J. Chem. Phys. 25, 1136–1142 (1956).

    Article  CAS  Google Scholar 

  26. Wardle, M. G., Goss, J. P. & Briddon, P. R. First-principles study of the diffusion of hydrogen in ZnO. Phys. Rev. Lett. 96, 205504 (2006).

    Article  CAS  Google Scholar 

  27. Vlasenko, L. S. & Watkins, G. D. Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO. Phys. Rev. B 71, 125210 (2005).

    Article  Google Scholar 

  28. Wardle, M. G., Goss, J. P. & Briddon, P. R. Theory of Fe, Co, Ni, Cu, and their complexes with hydrogen in ZnO. Phys. Rev. B 72, 155108 (2005).

    Article  Google Scholar 

  29. Lavrov, E. V., Börrnet, F. & Weber, J. Photoconductivity and infrared absorption study of hydrogen-related shallow donors in ZnO. Phys. Rev. B 72, 085212 (2005).

    Article  Google Scholar 

  30. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  31. Kresse, G. & Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  32. Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF MRSEC Program under award no. DMR05-20415, and by AFOSR (contract no. F49620-02-1-1163) and ONR (contract no. N00014-02-C-0433) through subcontracts from the Palo Alto Research Center. It also made use of the CNSI Computing Facility under NSF grant no. CHE-0321368.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anderson Janotti or Chris G. Van de Walle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures 5-8 (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janotti, A., Van de Walle, C. Hydrogen multicentre bonds. Nature Mater 6, 44–47 (2007). https://doi.org/10.1038/nmat1795

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1795

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing