Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiferroics: a magnetic twist for ferroelectricity

Abstract

Magnetism and ferroelectricity are essential to many forms of current technology, and the quest for multiferroic materials, where these two phenomena are intimately coupled, is of great technological and fundamental importance. Ferroelectricity and magnetism tend to be mutually exclusive and interact weakly with each other when they coexist. The exciting new development is the discovery that even a weak magnetoelectric interaction can lead to spectacular cross-coupling effects when it induces electric polarization in a magnetically ordered state. Such magnetic ferroelectricity, showing an unprecedented sensitivity to ap plied magnetic fields, occurs in 'frustrated magnets' with competing interactions between spins and complex magnetic orders. We summarize key experimental findings and the current theoretical understanding of these phenomena, which have great potential for tuneable multifunctional devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferroelectricity in charge-ordered systems.
Figure 2: High magnetic tunability of magnetic ferroelectrics.
Figure 3: Temperature dependence of the inverse magnetic susceptibility of magnetically frustrated materials.
Figure 4: Frustrated spin chains with the nearest-neighbour FM and next-nearest-neighbour AFM interactions J and J′.
Figure 5: Effects of the antisymmetric Dzyaloshinskii–Moriya interaction.
Figure 6: Spiral and non-spiral magnetic ferroelectrics.

Similar content being viewed by others

References

  1. Maxwell, J. C. A dynamical theory of the electromagnetic field. Phil. Trans. R. Soc. Lond. 155, 459–512 (1865).

    Article  Google Scholar 

  2. Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields 2nd edn (Pergamon, London, 1962).

    Google Scholar 

  3. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article  Google Scholar 

  4. Aharonov, Y. & Casher, A. Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984).

    Article  CAS  Google Scholar 

  5. Smolenskii, G. A. & Chupis, I. E. Ferroelectromagnets. Usp. Fiz. Nauk 137, 415–448 (1982); Sov. Phys. Usp. 25, 475–493 (1982).

    Article  CAS  Google Scholar 

  6. Jona, F. & Shirane, G. Ferroelectric Crystals (Dover, New York, 1993).

    Google Scholar 

  7. Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994).

    Article  Google Scholar 

  8. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).

    Article  CAS  Google Scholar 

  9. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, Oxford, 2001).

    Book  Google Scholar 

  10. Khomskii, D. I. Magnetism and ferroelectricity: why do they so seldom coexist? Bull. Am. Phys. Soc. C 21.002 (2001).

  11. Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001).

    Article  Google Scholar 

  12. Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3 . Phys. Rev. B 67, 180401 (2003).

    Article  Google Scholar 

  13. Kimura, T. et al. Magnetic control of ferroelectic polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  14. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    Article  CAS  Google Scholar 

  15. Lawes, G. et al. Magnetically driven ferroelectric order in Ni3V2O8 . Phys. Rev. Lett. 95, 087205 (2005).

    Article  CAS  Google Scholar 

  16. Kimura T., Lashley, J. C. & Ramirez, A. P. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2 . Phys. Rev. B 73, 220401(R) (2006).

    Article  Google Scholar 

  17. Yamasaki, Y. et al. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 96, 207204 (2006).

    Article  CAS  Google Scholar 

  18. Taniguchi, K., Abe, N., Takenobu, T., Iwasa, Y. & Arima, T. Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field. Phys. Rev. Lett. 97, 097203 (2006).

    Article  CAS  Google Scholar 

  19. Heyer, O. et al. A new multiferroic material: MnWO4 . J. Phys. Condens. Matter 18, L471–L475 (2006).

    Article  CAS  Google Scholar 

  20. Kimura, T., Lawes, G. & Ramirez, A. P. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94, 137201 (2005).

    Article  CAS  Google Scholar 

  21. Bar'yakhtar, V. G. & Chupis, I. E. Phenomenological theory of a ferroelectric magnet. Sov. Phys. Solid State 10, 2818–2821 (1969).

    Google Scholar 

  22. Bary'achtar, V. G., L'vov, V. A. & Jablonskii, D. A. Theory of inhomogeneous magnetoelectric effect. JETP Lett. 37, 673 (1983).

    Google Scholar 

  23. Stefanovskii, E. P. & Jablonskii, D. A. Theory of electrical polarization of multisublattice orthorhombic antiferromagnets with a double-exchange superlattice. Sov. J. Low Temp. Phys. 12, 478–480 (1986).

    Google Scholar 

  24. Katsura, H., Nagaosa, N. & Balatsky, V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Article  Google Scholar 

  25. Harris, A. B., Yildirim, T., Aharony, A. & Entin-Wohlman, O. Towards a microscopic model of magnetoelectric interactions in Ni3V2O8 . Phys. Rev. B 73, 184433 (2006).

    Article  Google Scholar 

  26. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Article  Google Scholar 

  27. Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Article  Google Scholar 

  28. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    Article  CAS  Google Scholar 

  29. Khomskii, D. I. Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1 (2006).

    Article  CAS  Google Scholar 

  30. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  31. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3 . Nature Mater. 3, 164–170 (2004).

    Article  CAS  Google Scholar 

  32. Seshadri, R. & Hill, N. A. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3 . Chem. Mater. 13, 2892 (2001).

    Article  CAS  Google Scholar 

  33. Son, J. Y., Kim, B. G., Kim, C. H. & Cho, J. H. Writing polarization bits on the multiferroic BiMnO3 thin film using Kelvin probe force microscope. Appl. Phys. Lett. 84, 4971–4973 (2004).

    Article  CAS  Google Scholar 

  34. Yang, C. H. et al. Resonant x-ray scattering study on multiferroic BiMnO3 . Phys. Rev. B 73, 224112 (2006).

    Article  Google Scholar 

  35. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Sov. Phys. Usp. 17, 199–214 (1974).

    Article  Google Scholar 

  36. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Article  Google Scholar 

  37. Verwey, E. J. W. & Haayman, P. W. Electronic conductivity and transition point of magnetite. Physica 8, 979 (1941).

    Article  CAS  Google Scholar 

  38. Efremov, D. V., van den Brink, J. & Khomskii, D. I. Bond-versus site-centered ordering and possible ferroelectricity in manganites. Nature Mater. 3, 853–856 (2004).

    Article  CAS  Google Scholar 

  39. Tokunaga, Y. et al. Rotation of orbital stripes and the consequent charge-polarized state in bilayer manganites. Nature Mater. 5, 937–941 (2006).

    Article  CAS  Google Scholar 

  40. Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated LuFe2O4 . Nature 436, 1136–1138 (2005).

    Article  CAS  Google Scholar 

  41. Hur, N. et al. Colossal magnetodielectric effects in DyMn2O5 . Phys. Rev. Lett. 93, 107207 (2004).

    Article  CAS  Google Scholar 

  42. Goto T. et al. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004).

    Article  CAS  Google Scholar 

  43. Kenzelmann, M. et al. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3 . Phys. Rev. Lett. 95, 087206 (2005).

    Article  CAS  Google Scholar 

  44. Quezel-Ambrunaz, S., Bertaut, F. & Buisson, G. Structure of TMn2O5 compounds of rare earth and manganese oxides. Compt. Rend. 258, 3025–3027 (1964).

    CAS  Google Scholar 

  45. Schieber, M. et al. Magnetocrystalline anisotropy of rare-earth manganites. J. Appl. Phys. 44, 1864–1867 (1973).

    Article  CAS  Google Scholar 

  46. Golovenchits, E. I., Morozov, N. V., Sanina, V. A. & Sapozhnikova, L. M. Correlation of magnetic and dielectric properties in EuMn2O5 single crystals. Sov. Phys. Solid State 34, 56–59 (1992).

    Google Scholar 

  47. Saito, K. & Kohn, K. Magnetoelectric effect and low-temperature phase transitions of TbMn2O5 . J. Phys. Condens. Matter 7, 2855–2863 (1995).

    Article  CAS  Google Scholar 

  48. Inomata, A. & Kohn, K., Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5 . J. Phys. Condens. Matter 8, 2673–2678 (1996).

    Article  CAS  Google Scholar 

  49. Gardner, P. P., Wilkinson, C., Forsyth, J. B. & Wanklyn, B. M. The magnetic structures of the rare-earth manganates ErMn2O5 and TbMn2O5 . J. Phys. C: Solid State Phys. 21, 5653–5661 (1998).

    Article  Google Scholar 

  50. Dzyaloshinskii, I. Theory of helical structures in antiferromagnets I: Nonmetals. Sov. Phys. JETP 19, 960–971 (1964).

    Google Scholar 

  51. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  52. Cheong, S. -W., Thompson, J. D. & Fisk, Z. Metamagnetism in La2CuO4 . Phys. Rev. B 39, 4395–4398 (1989).

    Article  CAS  Google Scholar 

  53. Kadomtseva, A. M. et al. Space-time parity violation and magnetoelectric interactions in antiferromagnets. JETP Lett. 79, 571–581 (2004).

    Article  CAS  Google Scholar 

  54. Kimura, T., Lawes G., Goto, T., Tokura Y. & Ramirez, A. P. Magnetoelectric phase diagrams of orthorhombic RMnO3 (R = Gd, Tb, and Dy). Phys. Rev. B 71, 224425 (2005).

    Article  Google Scholar 

  55. Noda, K. et al. Magnetic-field-induced switching between ferroelectric phases in orthorhombic-distortion-controlled RMnO3 . J. Appl. Phys. 99, 08S905 (2006).

    Article  Google Scholar 

  56. Hemberger, J. et al. The multiferroic phases of (Eu:Y)MnO3 . Preprint at <http://arxiv.org/cond-mat/0603258> (2006).

  57. Chapon, L. C. et al. Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5 . Phys. Rev. Lett. 93, 177402 (2004).

    Article  CAS  Google Scholar 

  58. Chapon, L. C. et al. Ferroelectricity induced by acentric spin-density waves in YMn2O5 . Phys. Rev. Lett. 96, 097601 (2006).

    Article  CAS  Google Scholar 

  59. Aliouane, N. et al. Field-induced linear magnetoelastic coupling in multiferroic TbMnO3 . Phys. Rev. B 73, R020102 (2006).

    Article  Google Scholar 

  60. Sergienko, I. A., Sen, C., Dagotto, E. Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. <arXiv/cond-mat/0608025> (2006).

  61. Fisher, M. E. & Selke, W. Infinitely many commensurate phases in a simple Ising model. Phys. Rev. 44, 1502 (1980).

    CAS  Google Scholar 

  62. Canfield, P. C., Thompson, J. D., Cheong, S. -W. & Rupp, L. W. Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds neodymium nickel oxide and praseodymium nickel oxide (NdNiO3 and PrNiO3). Phys. Rev. B 47, 12357 (1993).

    Article  CAS  Google Scholar 

  63. Alonso, J. A. et al. Charge disproportionation in RNiO3 perovskites: simultaneous metal–insulator and structural transition in YNiO3 . Phys. Rev. Lett. 82, 3871–2874 (1999).

    Article  CAS  Google Scholar 

  64. Torrance, J. B., Lacorre, P. & Nazzal, A. I. Systematic study of insulator–metal transitions in perovskite RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 45, 8209–8212 (1992).

    Article  CAS  Google Scholar 

  65. Fiebig, M., Lottermoser, T., Fröhlich, D., Goltsev, A. V. & Pisarev R. V. Observation of coupled magnetic and electric domains. Nature 419, 818 (2002).

    Article  CAS  Google Scholar 

  66. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430 541 (2004).

    Article  CAS  Google Scholar 

  67. Lorenz, B., Litvinchuk, A. P., Gospodinov, M. M. & Chu, C. W. Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3 . Phys. Rev. Lett. 92, 087204 (2004).

    Article  CAS  Google Scholar 

  68. Van Suchtelen, J. Product properties: A new application of composite materials. Philips Res. Rep. 27, 28–37 (1972).

    Google Scholar 

  69. Ryu, J., Priya, S., Uchino, K. & Kim, H. E. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002).

    Article  CAS  Google Scholar 

  70. Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  71. Ramesh, R. & Spaldin, N. Multiferroics: progress and prospects in thin films. Nature Mater. 6, 21–29 (2006).

    Article  Google Scholar 

  72. Baryakhtar, V. G. & Chupis, I. E. Quantum theory of oscillations in a ferroelectric ferromagnet. Sov. Phys. Solid State 11, 2628–2631 (1970).

    Google Scholar 

  73. Akhiezer, I. A. & Davydov, L. N. Coupled electromagnetic-spin waves in magnetically ordered ferroelectrics. Sov. Phys. Solid State 12, 2563–2565 (1971).

    Google Scholar 

  74. Chupis, I. E. Magnetoelectric waves in ferroelectric antiferromagnets with exchange coupled electric and magnetic polarizations. Sov. J. Low Temp. Phys. 2, 307–310 (1976).

    Google Scholar 

  75. Sirenko A. A. et al. Soft-mode hardening in SrTiO3 thin films. Nature 404, 373–376 (2000).

    Article  CAS  Google Scholar 

  76. Katsura, H., Balatsky, A. V. & Nagaosa, N. Dynamical magneto-electric coupling in helical magnets. Preprint at <http://arxiv.org/cond-mat/0602547> (2006).

  77. Golovenchits, E. I. & Sanina, V. A. Magnetic and magneto-lattice dynamics in GdMn2O5 . JETP Lett. 78, 88–91 (2003).

    Article  CAS  Google Scholar 

  78. Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).

    Article  CAS  Google Scholar 

  79. Sushkov, A. B. et al. Electromagnons in multiferroic YMn2O5 and TbMn2O5 . Preprint at <http://arxiv.org/cond-mat/0608707> (2006).

Download references

Acknowledgements

We thank Y. J. Choi, Y. Horibe, D. I. Khomskii, S. Y. Park and P. Radaelli for discussions, and A. F. Garcia-Flores, E. Granado and T. Kimura for providing figures. S.W.C. was supported by the National Science Foundation-MRSEC. M.M. acknowledges support by the MSCplus program, DFG (Mercator fellowship), and the hospitality of Cologne University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Wook Cheong or Maxim Mostovoy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, SW., Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nature Mater 6, 13–20 (2007). https://doi.org/10.1038/nmat1804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing