Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-performance elastomeric nanocomposites via solvent-exchange processing

Abstract

The incorporation of nanoparticles into engineering thermoplastics affords engineers an opportunity to synthesize polymer nanocomposites that potentially rival the most advanced materials in nature. Development of these materials is difficult because thermodynamic and kinetic barriers inhibit the dispersal of inorganic, often hydrophilic nanoparticles in hydrophobic polymer matrices. Using a new solvent-exchange approach, we preferentially reinforce the hard microdomains of thermoplastic elastomers with smectic clay of similar characteristic dimensions. The strong adhesion between the clay and the hard microdomains coupled with the formation of a percolative network not only stiffens and toughens, but increases the heat distortion temperature of the material and induces reversible thermotropic liquid-crystalline transitions. The discotic clay platelets induce morphological ordering over a range of length scales, which results in significant thermomechanical enhancement and expands high-temperature applications. Merging block-copolymer processing techniques with this method for preferential ordering of nanoparticle facilitates the development of new, hierarchically ordered materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of Elasthane 80A and Laponite dispersal within the polyurethane matrix.
Figure 2: Impact of Laponite concentration on the mechanical properties of Elasthane.
Figure 3: Impact of Laponite concentration on the thermomechanical properties of Elasthane.
Figure 4: Evidence of long-range order or crystallization in the nanocomposites in images obtained with a cross-polarized microscope.

Similar content being viewed by others

References

  1. Knight, D. P. & Vollrath, F. Biological liquid crystal elastomers. Phil. Trans. R. Soc. Lond. B 357, 155–163 (2002).

    Article  CAS  Google Scholar 

  2. Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  CAS  Google Scholar 

  3. Termonia, Y. Molecular modeling of spider silk elasticity. Macromolecules 27, 7378–7381 (1994).

    Article  CAS  Google Scholar 

  4. Simmons, A. H., Michal, C. A. & Jelinski, L. W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  CAS  Google Scholar 

  5. van Beek, J. D. et al. Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature 405, 1077–1079 (2000).

    Article  CAS  Google Scholar 

  6. Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    Article  CAS  Google Scholar 

  7. Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  8. Gosline, J., Guerette, P., Ortlepp, C. & Savage, K. The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  Google Scholar 

  9. Koerner, H., Price, G., Pearce, N. A., Alexander, M. & Vaia, R. A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Mater. 3, 115–120 (2004).

    Article  CAS  Google Scholar 

  10. Vaia, R. A. & Wagner, H. D. Framework for nanocomposites. Mater. Today 7, 32–37 (2004).

    Article  CAS  Google Scholar 

  11. Szycher, M. Szycher’s Handbook of Polyurethanes (CRC Press, Boca Raton, 1999).

    Google Scholar 

  12. Wiggins, M. J., MacEwan, M., Anderson, J. M. & Hiltner, A. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. J. Biomed. Mater. Res. A 68, 668–683 (2004).

    Article  Google Scholar 

  13. Finnigan, B. et al. Segmented polyurethane nanocomposites: Impact of controlled particle size nanofillers on the morphological response to uniaxial deformation. Macromolecules 38, 7386–7396 (2005).

    Article  CAS  Google Scholar 

  14. Yeh, F., Hsiao, B. S., Sauer, B. B., Michel, S. & Siesler, H. W. In-situ studies of structure development during deformation of a segmented poly(urethane-urea) elastomer. Macromolecules 36, 1940–1954 (2003).

    Article  CAS  Google Scholar 

  15. Kim, H. D., Lee, T. J., Huh, J. H. & Lee, D. J. Preparation and properties of segmented thermoplastic polyurethane elastomers with two different soft segments. J. Appl. Polym. Sci. 73, 345–352 (1999).

    Article  CAS  Google Scholar 

  16. Nair, B. R., Gregoriou, V. G. & Hammond, P. T. FT-IR studies of side chain liquid crystalline thermoplastic elastomers. Polymer 41, 2961–2970 (2000).

    Article  CAS  Google Scholar 

  17. Yeganeh, H. & Shamekhi, M. A. Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability. Polymer 45, 359–365 (2004).

    Article  CAS  Google Scholar 

  18. Stanford, J. L., Still, R. H. & Wilkinson, A. N. Effects of soft-segment prepolymer functionality on structure—property relations in RIM copolyurethanes. Polymer 44, 3985–3994 (2003).

    Article  CAS  Google Scholar 

  19. Martin, D. J., Meijs, G. F., Gunatillake, P. A., Yozghatlian, S. P. & Renwick, G. M. The influence of composition ratio on the morphology of biomedical polyurethanes. J. Appl. Polym. Sci. 71, 937–952 (1999).

    Article  CAS  Google Scholar 

  20. Ryan, A. J., Stanford, J. L. & Birch, A. J. Copolyureas formed by reaction injection moulding: Correlations between chemical structure, thermal properties and microphase separation. Polymer 34, 4874–4881 (1993).

    Article  CAS  Google Scholar 

  21. Lee, D. K. & Tsai, H. B. Properties of segmented polyurethanes derived from different diisocyanates. J. Appl. Polym. Sci. 75, 167–174 (2000).

    Article  CAS  Google Scholar 

  22. Knight, D. P., Knight, M. M. & Vollrath, F. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int. J. Biol. Macromol. 27, 205–210 (2000).

    Article  CAS  Google Scholar 

  23. Porter, D., Vollrath, F. & Shao, Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E 16, 199–206 (2005).

    Article  CAS  Google Scholar 

  24. Sinha Ray, S. & Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003).

    Article  Google Scholar 

  25. Thostenson, E. T., Li, C. & Chou, T.-W. Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005).

    Article  CAS  Google Scholar 

  26. Eisenbach, C. D., Ribbe, A. & Gunter, C. Morphological-studies of model polyurethane elastomers by element-specific electron-microscopy. Macromol. Rapid Commun. 15, 395–403 (1994).

    Article  CAS  Google Scholar 

  27. Alexandre, M. & Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R 28, 1–63 (2000).

    Article  Google Scholar 

  28. Njuguna, J. & Pielichowski, K. Polymer nanocomposites for aerospace applications: Fabrication. Adv. Eng. Mater. 6, 193–203 (2004).

    Article  CAS  Google Scholar 

  29. Burgentzle, D., Duchet, J., Gerard, J. F., Jupin, A. & Fillon, B. Solvent-based nanocomposite coatings: I. Dispersion of organophilic montmorillonite in organic solvents. J. Colloid Interface Sci. 278, 26–39 (2004).

    Article  CAS  Google Scholar 

  30. Finnigan, B., Martin, D., Halley, P., Truss, R. & Campbell, K. Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer 45, 2249–2260 (2004).

    Article  CAS  Google Scholar 

  31. Dai, X. H. et al. Study on structure and orientation action of polyurethane nanocomposites. Macromolecules 37, 5615–5623 (2004).

    Article  CAS  Google Scholar 

  32. Rhoney, I., Brown, S., Hudson, N. E. & Pethrick, R. A. Influence of processing method on the exfoliation process for organically modified clay systems. I. Polyurethanes. J. Appl. Polym. Sci. 91, 1335–1343 (2004).

    Article  CAS  Google Scholar 

  33. Kumar, N., Liff, S. M. & McKinley, G. H. Method to disperse and exfoliate nanoparticles. US Patent Application 11/253,219 (Filed October 18, 2005).

  34. Lee, H. S., Yoo, S. R. & Seo, S. W. Domain and segmental deformation behavior of thermoplastic elastomers using synchrotron SAXS and FTIR methods. J. Polym. Sci. B 37, 3233–3245 (1999).

    CAS  Google Scholar 

  35. Wang, C. B. & Cooper, S. L. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 16, 775–786 (1983).

    Article  CAS  Google Scholar 

  36. Young, R. J. & Lovell, P. A. Introduction to Polymers (Chapman and Hall, London, 1991).

    Book  Google Scholar 

  37. Guth, E. Theory of filler reinforcement. J. Appl. Phys. 16, 20–25 (1945).

    Article  CAS  Google Scholar 

  38. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  CAS  Google Scholar 

  39. O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  Google Scholar 

  40. Petrovic, Z. S., Javni, I., Waddon, A. & Banhegyi, G. Structure and properties of polyurethane-silica nanocomposites. J. Appl. Polym. Sci. 76, 133–151 (2000).

    Article  CAS  Google Scholar 

  41. Frogley, M. D., Ravich, D. & Wagner, H. D. Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647–1654 (2003).

    Article  CAS  Google Scholar 

  42. Zhang, T. et al. Synthesis, properties of fullerene-containing polyurethane-urea and its optical limiting absorption. Polymer 44, 2647–2654 (2003).

    Article  CAS  Google Scholar 

  43. Tang, Z. Y., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    Article  CAS  Google Scholar 

  44. Dierking, I. Liquid crystalline fractals: Dilatation invariant growth structures in the phase ordering process of ‘banana-phases’. Liq. Cryst. Today 12, 1–10 (2003).

    Article  CAS  Google Scholar 

  45. Aneja, A. & Wilkes, G. L. A systematic series of ‘model’ PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer 44, 7221–7228 (2003).

    Article  CAS  Google Scholar 

  46. Acierno, D. et al. Synthesis and characterisation of a nematic homo-polyurethane. Polymer 44, 4949–4958 (2003).

    Article  CAS  Google Scholar 

  47. Kojio, K., Nakamura, S. & Furukawa, M. Effect of side methyl groups of polymer glycol on elongation-induced crystallization behavior of polyurethane elastomers. Polymer 45, 8147–8152 (2004).

    Article  CAS  Google Scholar 

  48. Korley, L. T. J., Liff, S. M., Kumar, N., McKinley, G. H. & Hammond, P. T. Preferential association of segment blocks in polyurethane nanocomposites. Macromolecules 39, 7030–7036 (2006).

    Article  CAS  Google Scholar 

  49. Grillo, I., Levitz, P. & Zemb, T. Insertion of small anisotropic clay particles in swollen lamellar or sponge phases of nonionic surfactant. Eur. Phys. J. E 5, 377–386 (2001).

    Article  CAS  Google Scholar 

  50. Malwitz, M. M., Lin-Gibson, S., Hobbie, E. K., Butler, P. D. & Schmidt, G. Orientation of platelets in multilayered nanocomposite polymer films. J. Polym. Sci. B 41, 3237–3248 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge S. Kooi, M. Johnson and B. Pate for TEM sample preparation using the FIB, TEM examination of the FIB samples and WAXD collection between 2 and 38, respectively. This research was supported by the US Army through the Institute for Soldier Nanotechnologies, under contract DAAD-19-02-0002 with the US Army Research Office. S.M.L. was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

N.K. developed the solvent-exchange process and carried out the thermal annealing–polarization study. S.M.L prepared the samples and carried out the AFM, DMA, DSC, mechanical analyses and initial TEM. The creep experiments and x-ray diffraction studies were carried out jointly.

Corresponding author

Correspondence to Gareth H. McKinley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S5, S6 (PDF 2851 kb)

Supplementary Information

Supplementary movie: figure S4 (MOV 2461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liff, S., Kumar, N. & McKinley, G. High-performance elastomeric nanocomposites via solvent-exchange processing. Nature Mater 6, 76–83 (2007). https://doi.org/10.1038/nmat1798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing