Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Excitons in nanoscale systems

A Corrigendum to this article was published on 14 September 2006

Abstract

Nanoscale systems are forecast to be a means of integrating desirable attributes of molecular and bulk regimes into easily processed materials. Notable examples include plastic light-emitting devices and organic solar cells, the operation of which hinge on the formation of electronic excited states, excitons, in complex nanostructured materials. The spectroscopy of nanoscale materials reveals details of their collective excited states, characterized by atoms or molecules working together to capture and redistribute excitation. What is special about excitons in nanometre-sized materials? Here we present a cross-disciplinary review of the essential characteristics of excitons in nanoscience. Topics covered include confinement effects, localization versus delocalization, exciton binding energy, exchange interactions and exciton fine structure, exciton–vibration coupling and dynamics of excitons. Important examples are presented in a commentary that overviews the present understanding of excitons in quantum dots, conjugated polymers, carbon nanotubes and photosynthetic light-harvesting antenna complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excitons in nanoscale systems.
Figure 2: Frenkel excitons in photosynthesis.
Figure 3: Excitons in single-wall carbon nanotubes.
Figure 4: Colloidal CdSe quantum dots.
Figure 5: Size dependence of exciton transition energies.
Figure 6: Size dependence of exchange interactions.
Figure 7: Conformational subunits of conjugated polymers.

Similar content being viewed by others

References

  1. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    CAS  Google Scholar 

  2. Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 107, 4688–4698 (2003).

    CAS  Google Scholar 

  3. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Google Scholar 

  4. Koch, S. W., Kira, M., Khitrova, G. & Gibbs, H. M. Semiconductor excitons in a new light. Nature Mater. 5, 523–531 (2006).

    CAS  Google Scholar 

  5. Elliott, R. J. in Polarons and Excitons (eds Kuper, C. G. & Whitfield, G. D.) 269–293 (Plenum, New York, 1962).

    Google Scholar 

  6. Knox, R. S. in Collective Excitations in Solids (ed. Bartolo, B. D.) 183–245 (Plenum, New York, 1981).

    Google Scholar 

  7. McRae, E. G. & Kasha, M. in Physical Processes in Radiation Biology, 23–42 (Academic, New York, 1964).

    Google Scholar 

  8. Slater, J. C. & Shockley, W. Optical absorption by the alkali halides. Phys. Rev. 50, 705–719 (1936).

    CAS  Google Scholar 

  9. Hoffmann, R. How chemistry meets physics in the solid state. Angew. Chem. Int. Edn. Engl. 26, 846–878 (1987).

    Google Scholar 

  10. Cohen, M. L. Nanotubes, nanoscience, and nanotechnology. Mater. Sci. Eng. C. 15, 1–11 (2001).

    Google Scholar 

  11. Cohen, M. L. The theory of real materials. Annu. Rev. Mater. Sci. 30, 1–26 (2000).

    CAS  Google Scholar 

  12. Tretiak, S. & Mukamel, S. Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. Chem. Rev. 102, 3171–3212 (2002).

    CAS  Google Scholar 

  13. Brédas, J. L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104, 4971–5003 (2004).

    Google Scholar 

  14. Sundström, V., Pullerits, T. & van Grondelle, R. Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103, 2327–2346 (1999).

    Google Scholar 

  15. Scholes, G. D. & Fleming, G. R. Energy transfer and photosynthetic light harvesting. Adv. Chem. Phys. 132, 57–130 (2005).

    Google Scholar 

  16. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    CAS  Google Scholar 

  17. Doust, A. B., Wilk, K. E., Curmi, P. M. G. & Scholes, G. D. The photophysics of cryptophyte light harvesting. J. Photochem. Photobiol. A. Chem. (in the press); doi:10.1016/j.jphotochem.2006.06.006.

  18. Scholes, G. D., Jordanides, X. J. & Fleming, G. R. Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J. Phys. Chem. B 105, 1640–1651 (2001).

    CAS  Google Scholar 

  19. Rothberg, L. J. et al. Photophysics of phenylenevinylene polymers. Synth. Met. 80, 41–58 (1996).

    CAS  Google Scholar 

  20. Bässler, H. & Schweitzer, B. Site-selective fluorescence spectroscopy of conjugated polymers and oligomers. Acc. Chem. Res. 32, 173–182 (1999).

    Google Scholar 

  21. Sariciftci, N. S. (ed.) Primary Excitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model (World Scientific, Singapore, 1997).

    Google Scholar 

  22. Barbara, P. F., Gesquiere, A. J., Park, S.-J. & Lee, Y. J. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38, 602–610 (2005).

    CAS  Google Scholar 

  23. Köhler, A. et al. Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 392, 903–906 (1998).

    Google Scholar 

  24. Morteani, A. C. et al. Barrier-free electron–hole capture in polymer blend heterojunction light-emitting diodes. Adv. Mater. 15, 1708–1712 (2003).

    CAS  Google Scholar 

  25. Morteani, A. C., Sreearunothai, P., Hertz, L. M., Friend, R. H. & Silva, C. Exciton regeneration at polymeric semiconductor heterojunctions. Phys. Rev. Lett. 92, 247402 (2004).

    Google Scholar 

  26. Knibbe, H., Røllig, K., Schä fer, F. P. & Weller, A. Charge-transfer complex and solvent-shared ion pair in fluorescence quenching. J. Chem. Phys. 47, 1184–1185 (1967).

    CAS  Google Scholar 

  27. Terrones, M., Hsu, W. K., Kroto, H. W. & Walton, D. R. M. Nanotubes: a revolution in materials science and electronics. Top. Curr. Chem. 199, 189–234 (1999).

    CAS  Google Scholar 

  28. O'Connell, M. J. et al. Bandgap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    CAS  Google Scholar 

  29. Ando, T. Excitons in carbon nanotubes. J. Phys. Soc. Japan 66, 1066–1073 (1997).

    CAS  Google Scholar 

  30. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    CAS  Google Scholar 

  31. Reich, S., Thomsen, C. & Maultzsch, J. Carbon nanotubes: basic concepts and physical properties (Wiley, New York, 2004).

  32. Jones, M. et al. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 71, 115426 (2005).

    Google Scholar 

  33. Didraga, C. & Knoester, J. Exchange narrowing in circular and cylindrical molecular aggregates: degenerate versus nondegenerate states. Chem. Phys. 275, 307–318 (2002).

    CAS  Google Scholar 

  34. Gaponenko, S. V. Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  35. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996).

    CAS  Google Scholar 

  36. Burda, C., Chen, X. B., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    CAS  Google Scholar 

  37. Weller, H. Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Edn Engl. 32, 41–53 (1993).

    Google Scholar 

  38. Klimov, V. I. (ed.) Semiconductor and metal nanocrystals: synthesis and electronic and optical properties (Marcel Dekker, New York, 2004).

    Google Scholar 

  39. Bimberg, D., Grundman, M. & Ledentsov, N. N. Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  40. Yoffe, A. D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001).

    CAS  Google Scholar 

  41. Efros, A. L. & Efros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 772–775 (1982).

    Google Scholar 

  42. Ekimov, A. I. et al. Absorption and intensity-dependent photoluminescence measurement on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10, 100 (1993).

    CAS  Google Scholar 

  43. Rabani, E., Hetenyi, B., Berne, B. J. & Brus, L. E. Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium. J. Chem. Phys. 110, 5355–5369 (1999).

    CAS  Google Scholar 

  44. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005).

    CAS  Google Scholar 

  45. Klevens, H. B. & Platt, J. R. Spectral resemblances of cata-condensed hydrocarbons. J. Chem. Phys. 17, 470–481 (1949).

    CAS  Google Scholar 

  46. Hines, M. A. & Scholes, G. D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844–1849 (2003).

    CAS  Google Scholar 

  47. Micic, O. I. et al. Size-dependent spectroscopy of InP quantum dots. J. Phys. Chem. B 101, 4904 (1997).

    CAS  Google Scholar 

  48. Yu, W. W., Qu, L. H., Guo, W. Z. & Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003).

    CAS  Google Scholar 

  49. Nesher, G., Kronik, L. & Chelikowsky, J. R. Ab initio absorption spectra of Ge nanocrystals. Phys. Rev. B 71, 35344 (2005).

    Google Scholar 

  50. Pariser, R. & Parr, R. G. A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I. J. Chem. Phys. 21, 466–471 (1953).

    CAS  Google Scholar 

  51. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    CAS  Google Scholar 

  52. Leung, K., Pokrant, S. & Whaley, K. B. Exciton fine structure in CdSe nanoclusters. Phys. Rev. B 57, 12291–12301 (1998).

    CAS  Google Scholar 

  53. Hertel, D. et al. Phosphorescence in conjugated poly(para-phenylene)-derivatives. Adv. Mater. 13, 65–70 (2001).

    CAS  Google Scholar 

  54. Köhler, A. & Beljonne, D. The singlet–triplet exchange energy in conjugated polymers. Adv. Funct. Mater. 14, 11–18 (2004).

    Google Scholar 

  55. Wasserberg, D., Marsal, P., Meskers, S. C. J., Janssen, R. A. J. & Beljonne, D. Phosphorescence and triplet state energies of oligothiophenes. J. Phys. Chem. B 109, 4410–4415 (2005).

    CAS  Google Scholar 

  56. Chi, C. Y., Im, C. & Wegner, G. Lifetime determination of fluorescence and phosphorescence of a series of oligofluorenes. J. Chem. Phys. 124, 24907 (2006).

    Google Scholar 

  57. McGlynn, S. P., Azumi, T. & Kinoshita, M. Molecular Spectroscopy of the Triplet State (Prentice-Hall, Englewood Cliffs, NJ, 1969).

    Google Scholar 

  58. Catalán, J. & de Paz, J. L. G. On the ordering of the first two excited electronic states in all-trans linear polyenes. J. Chem. Phys. 120, 1864–1872 (2004).

    Google Scholar 

  59. Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nanoletters 5, 2495–2499 (2005).

    CAS  Google Scholar 

  60. Fanceschetti, A. & Zunger, A. Direct pseudopotential calculation of exciton coulomb and exchange energies in semiconductor quantum dots. Phys. Rev. Lett. 78, 915–918 (1997).

    Google Scholar 

  61. Fu, H. X. & Zunger, A. InP quantum dots: electronic structure, surface effects, and the redshifted emission. Phys. Rev. B 56, 1496–1508 (1997).

    CAS  Google Scholar 

  62. Leung, K. & Whaley, K. B. Electron–hole interactions in silicon nanocrystals. Phys. Rev. B 56, 7455–7468 (1997).

    CAS  Google Scholar 

  63. Banin, U., Lee, J. C., Guzelian, A. A., Kadavanich, A. V. & Alivisatos, A. P. Exchange interaction in InAs nanocrystal quantum dots. Superlattices Microstruct. 22, 559–567 (1997).

    CAS  Google Scholar 

  64. Lavallard, P. et al. Exchange interaction and acoustical phonon modes in CdTe nanocrystals. Solid State Commun. 127, 439–442 (2003).

    CAS  Google Scholar 

  65. Gogolin, O., Mshvelidze, G., Tsitishvili, E., Djanelidze, R. & Klingshirn, C. Exchange interaction in argentum iodide nanocrystals. J. Lumin. 102, 414–416 (2003).

    Google Scholar 

  66. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

    Google Scholar 

  67. Huxter, V. M., Kovalevskij, V. & Scholes, G. D. Dynamics within the exciton fine structure of colloidal CdSe quantum dots. J. Phys. Chem. B 109, 20060–20063 (2005).

    CAS  Google Scholar 

  68. Yaron, D., Moore, E. E., Shuai, Z. & Brédas, J. L. Comparison of density matrix renormalization group calculations with electron–hole models of exciton binding in conjugated polymers. J. Chem. Phys. 108, 7451–7458 (1998).

    CAS  Google Scholar 

  69. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    CAS  Google Scholar 

  70. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    CAS  Google Scholar 

  71. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).

    CAS  Google Scholar 

  72. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 77402 (2004).

    Google Scholar 

  73. Chang, E., Bussi, G., Ruini, A. & Molinari, E. Excitons in carbon nanotubes: an ab initio symmetry-based approach. Phys. Rev. Lett. 92, 196401 (2004).

    Google Scholar 

  74. Zhao, H. & Mazumdar, S. Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004).

    Google Scholar 

  75. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    CAS  Google Scholar 

  76. Ma, Y.-Z., Valkunas, L., Bachilo, S. M. & Fleming, G. R. Exciton binding energy in semiconducting single-walled carbon nanotubes. J. Phys. Chem. B 109, 15671–15674 (2005).

    CAS  Google Scholar 

  77. Heijs, D. J., Malyshev, V. A. & Knoester, J. Decoherence of excitons in multichromophoric systems: thermal line broadening and destruction of superradiant emission. Phys. Rev. Lett. 95, 177402 (2005).

    CAS  Google Scholar 

  78. Brédas, J.-L., Cornil, J., Beljonne, D., dos Santos, D. A. & Shuai, Z. Excited-state electronic structure of conjugated oligomers and polymers: a quantum-chemical approach to optical phenomena. Acc. Chem. Res. 32, 267–276 (1999).

    Google Scholar 

  79. Moses, D., Wang, J., Heeger, A. J., Kirova, N. & Brazovski, S. Singlet exciton binding energy in poly(phenylene vinylene). Proc. Natl Acad. Sci. 98, 13496–13500 (2001).

    CAS  Google Scholar 

  80. Silva, C. et al. Exciton and polaron dynamics in a step-ladder polymeric semiconductor: the influence of interchain order. J. Phys.: Condens. Matter 14, 9803–9824 (2002).

    CAS  Google Scholar 

  81. Arkhipov, V. I. & Bässler, H. Exciton dissociation and charge photogeneration in pristine and doped conjugated polymers. Phys. Status Solidi A 201, 1152–1187 (2004).

    CAS  Google Scholar 

  82. Brédas, J. L., Cornil, J. & Heeger, A. J. The exciton binding energy in luminescent conjugated polymers. Adv. Mater. 8, 447–452 (1996).

    Google Scholar 

  83. Lax, M. The Franck–Condon principle and its application to crystals. J. Chem. Phys. 20, 1752–1760 (1952).

    CAS  Google Scholar 

  84. Sumi, H. Exciton–lattice interaction and the line shape of exciton absorption in molecular crystals. J. Chem. Phys. 67, 2943–2954 (1977).

    CAS  Google Scholar 

  85. Scholes, G. D., Harcourt, R. D. & Ghiggino, K. P. Rate expressions for excitation transfer. III. An ab initio study of electronic factors in excitation transfer and exciton resonance interactions. J. Chem. Phys. 102, 9574–9581 (1995).

    CAS  Google Scholar 

  86. Fleming, G. R., Passino, S. A. & Nagasawa, Y. The interaction of solutes with their environments. Phil. Trans. R. Soc. London A 356, 389–404 (1998).

    CAS  Google Scholar 

  87. Nakajima, S. The Physics of Elementary Excitations (Springer, New York, 1980).

    Google Scholar 

  88. Franco, I. & Tretiak, S. Electron-vibrational dynamics of photoexcited polyfluorenes. J. Am. Chem. Soc. 126, 12130–12140 (2004).

    CAS  Google Scholar 

  89. Jimenez, R., Dikshit, S. N., Bradforth, S. E. & Fleming, G. R. Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J. Phys. Chem. 100, 6825–6834 (1996).

    CAS  Google Scholar 

  90. Alden, R. G. et al. Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex from Rhodopseudomonas acidophila. J. Phys. Chem. B 101, 4667–4680 (1997).

    CAS  Google Scholar 

  91. Jang, S., Dempster, S. E. & Silbey, R. J. Characterization of the static disorder in the B850 band of LH2. J. Phys. Chem. B 105, 6655–6665 (2001).

    CAS  Google Scholar 

  92. Van Oijen, A. M., Ketelaars, M., Kö hler, J., Aartsma, T. J. & Schmidt, J. Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285, 400–402 (1999).

    CAS  Google Scholar 

  93. Pullerits, T., Chachisvilis, M. & Sundström, V. Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792 (1996).

    CAS  Google Scholar 

  94. Monshouwer, R., Abrahamsson, M., van Mourik, F. & van Grondelle, R. Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248 (1997).

    CAS  Google Scholar 

  95. Hu, D. et al. Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations. Nature 405, 1030–1033 (2000).

    CAS  Google Scholar 

  96. Schindler, F. et al. Counting chromophores in conjugated polymers. Angew. Chem. Int. Edn Engl. 44, 1520–1525 (2005).

    CAS  Google Scholar 

  97. Beljonne, D. et al. Interchain vs. intrachain energy transfer in acceptor-capped conjugated polymers. Proc. Natl Acad. Sci. 99, 10982–10987 (2002).

    CAS  Google Scholar 

  98. Chang, R., Hayashi, M., Lin, S. H., Hsu, J.-H. & Fann, W. S. Ultrafast dynamics of excitations in conjugated polymers: a spectroscopic study. J. Chem. Phys. 115, 4339–4348 (2001).

    CAS  Google Scholar 

  99. Wang, X., Dykstra, T. E. & Scholes, G. D. Photon-echo studies of collective absorption and dynamic localization of excitation in conjugated polymers and oligomers. Phys. Rev. B 71, 45203 (2005).

    Google Scholar 

  100. Ruseckas, A. et al. Ultrafast depolarization of the fluorescence in a conjugated polymer. Phys. Rev. B 72, 115214 (2005).

    Google Scholar 

  101. Beenken, W. J. D. & Pullerits, T. Spectroscopic units in conjugated polymers: a quantum chemically founded concept? J. Phys. Chem. B 108, 6164–6169 (2004).

    CAS  Google Scholar 

  102. Tretiak, S., Saxena, A., Martin, R. L. & Bishop, A. R. Conformational dynamics of photoexcited conjugated molecules. Phys. Rev. Lett. 89, 97402 (2002).

    CAS  Google Scholar 

  103. LĂ©cuiller, R. et al. Fluorescence yield and lifetime of isolated polydiacetylene chains: evidence for a one-dimensional exciton band in a conjugated polymer. Phys. Rev. B 66, 125205 (2002).

    Google Scholar 

  104. Takagahara, T. Electron–phonon interactions and excitonic dephasing in semiconductor nanocrystals. Phys. Rev. Lett. 71, 3577–3580 (1993).

    CAS  Google Scholar 

  105. Plentz, F., Ribeiro, H. B., Jorio, A., Strano, M. S. & Pimenta, M. A. Direct experimental evidence of exciton–phonon bound states in carbon nanotubes. Phys. Rev. Lett. 95, 247401 (2005).

    Google Scholar 

  106. Telg, H., Maultzsch, J., Reich, S., Hennrich, F. & Thomsen, C. Chirality distribution and transition energies of carbon nanotubes. Phys. Rev. Lett. 93, 177401 (2004).

    CAS  Google Scholar 

  107. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    CAS  Google Scholar 

  108. Valkunas, L., Ma, Y.-Z. & Fleming, G. R. Exciton–exciton annihilation in single-walled carbon nanotubes. Phys. Rev. B 73, 115432 (2006).

    Google Scholar 

  109. De Schryver, F. C. et al. Energy dissipation in multichromophoric single dendrimers. Acc. Chem. Res. 38, 514–522 (2005).

    CAS  Google Scholar 

  110. Sternlicht, H., Nieman, G. C. & Robinson, G. W. Triplet–triplet annihilation and delayed fluorescence in molecular aggregates. J. Chem. Phys. 38, 1326–1335 (1963).

    CAS  Google Scholar 

  111. Klimov, V. I., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 60, 13740–13749 (1999).

    CAS  Google Scholar 

  112. Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    CAS  Google Scholar 

  113. Guyot-Sionnest, P., Wehrenberg, B. & Yu, D. Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. J. Chem. Phys. 123, 74709 (2005).

    Google Scholar 

  114. Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–120 (2002).

    CAS  Google Scholar 

  115. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    CAS  Google Scholar 

  116. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nanoletters 5, 865–871 (2005).

    CAS  Google Scholar 

  117. Scholes, G. D., Ghiggino, K. P., Oliver, A. M. & Paddon-Row, M. N. Through-space and through-bond effects on exciton interactions in rigidly linked dinaphthyl molecules. J. Am. Chem. Soc. 115, 4345–4349 (1993).

    CAS  Google Scholar 

  118. Curutchet, C. & Mennucci, B. Toward a molecular scale interpretation of excitation energy transfer in solvated bichromophoric systems. J. Am. Chem. Soc. 127, 16733–16744 (2005).

    CAS  Google Scholar 

  119. Fritz, K. P. et al. Structural characterization of CdSe nanorods. J. Cryst. Growth 293, 203–208 (2006).

    CAS  Google Scholar 

  120. Gierschner, J., Mack, H.-G., Lü er, L. & Oelkrug, D. Fluorescence and absorption spectra of oligophenylenevinylenes: vibronic coupling, band shapes, and solvatochromism. J. Chem. Phys. 116, 8596–8609 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

G.D.S. thanks G. J. Wilson for introducing him to excitons. He acknowledges funding from the Natural Sciences and Engineering Research Council of Canada and the A. P. Sloan Foundation. G.R. acknowledges funding through the Photochemistry and Radiation research program of the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences (DoE contract DE-AC36-99G010337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Scholes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholes, G., Rumbles, G. Excitons in nanoscale systems. Nature Mater 5, 683–696 (2006). https://doi.org/10.1038/nmat1710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing