Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-resolved electrostatic force microscopy of polymer solar cells

Abstract

Blends of conjugated polymers with fullerenes, polymers, or nanocrystals make promising materials for low-cost photovoltaic applications. Different processing conditions affect the efficiencies of these solar cells by creating a variety of nanostructured morphologies, however, the relationship between film structure and device efficiency is not fully understood. We introduce time-resolved electrostatic force microscopy (EFM) as a means to measure photoexcited charge in polymer films with a resolution of 100 nm and 100 μs. These EFM measurements correlate well with the external quantum efficiencies measured for a series of polymer photodiodes, providing a direct link between local morphology, local optoelectronic properties and device performance. The data show that the domain centres account for the majority of the photoinduced charge collected in polyfluorene blend devices. These results underscore the importance of controlling not only the length scale of phase separation, but also the composition of the domains when optimizing nanostructured solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measuring photoexcited charge with an AFM.
Figure 2: Time-resolving charge creation.
Figure 3: Charging rate image of a polymer blend film.
Figure 4: Correlating charging rate and EQE.

Similar content being viewed by others

References

  1. Nelson, J. Solar energy—Solar cells by self-assembly? Science 293, 1059–1060 (2001).

    Article  Google Scholar 

  2. Shaheen, S. E., Ginley, D. S. & Jabbour, G. E. Organic-based photovoltaics. toward lowm-cost power generation. Mater. Res. Soc. Bull. 30, 10–19 (2005).

    Article  Google Scholar 

  3. Hoppe, H. & Sariciftci, N. S. Organic solar cells: An overview. Mater. Res. Soc. Bull. 19, 1924–1945 (2004).

    Article  Google Scholar 

  4. Gregg, B. A. The photoconversion mechanism of excitonic solar cells. Mater. Res. Soc. Bull. 30, 20–22 (2005).

    Article  Google Scholar 

  5. Halls, J. J. M. et al. Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).

    Article  Google Scholar 

  6. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  Google Scholar 

  7. Chirvase, D., Parisi, J., Hummelen, J. C. & Dyakonov, V. Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 15, 1317–1323 (2004).

    Article  Google Scholar 

  8. Padinger, F., Rittberger, R. S. & Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003).

    Article  Google Scholar 

  9. van Duren, J. K. J. et al. Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv. Funct. Mater. 14, 425–434 (2004).

    Article  Google Scholar 

  10. Kim, Y. et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nature Mater. 5, 197–203 (2006).

    Article  Google Scholar 

  11. Snaith, H. J., Arias, A. C., Morteani, A. C., Silva, C. & Friend, R. H. Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett. 2, 1353–1357 (2002).

    Article  Google Scholar 

  12. Arias, A. C. et al. Photovoltaic performance and morphology of polyfluorene blends: A combined microscopic and photovoltaic investigation. Macromolecules 34, 6005–6013 (2001).

    Article  Google Scholar 

  13. Moons, E. Conjugated polymer blends: linking film morphology to performance of light emitting diodes and photodiodes. J. Phys. Condens. Matter 14, 12235–12260 (2002).

    Article  Google Scholar 

  14. Coakley, K. M., Liu, Y. X., Goh, C. & McGehee, M. D. Ordered organic-inorganic bulk heterojunction photovoltaic cells. Mater. Res. Bull. 30, 37–40 (2005).

    Article  Google Scholar 

  15. Coffey, D. C. & Ginger, D. S. Patterning phase separation in polymer films with dip-pen nanolithography. J. Am. Chem. Soc. 127, 4564–4565 (2005).

    Article  Google Scholar 

  16. McNeill, C. R., Frohne, H., Holdsworth, J. L. & Dastoor, P. C. Near-field scanning photocurrent measurements of polyfluorene blend devices: Directly correlating morphology with current generation. Nano Lett. 4, 2503–2507 (2004).

    Article  Google Scholar 

  17. Chappell, J. et al. Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends. Nature Mater. 2, 616–621 (2003).

    Article  Google Scholar 

  18. McNeill, J. D. & Barbara, P. F. NSOM investigation of carrier generation, recombination, and drift in a conjugated polymer. J. Phys. Chem. B 106, 4632–4639 (2002).

    Article  Google Scholar 

  19. Stevenson, R. et al. Fluorescence scanning near-field optical microscopy of polyfluorene composites. J. Microsc.-Oxford 202, 433–438 (2001).

    Article  Google Scholar 

  20. Cadby, A., Dean, R., Fox, A. M., Jones, R. A. L. & Lidzey, D. G. Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope. Nano Lett. 5, 2232–2237 (2005).

    Article  Google Scholar 

  21. DeAro, J. A., Moses, D. & Buratto, S. K. Near-field photoconductivity of stretch-oriented poly(para-phenylene vinylene). Appl. Phys. Lett. 75, 3814–3816 (1999).

    Article  Google Scholar 

  22. Riehn, R. et al. Local probing of photocurrent and photoluminescence in a phase-separated conjugated-polymer blend by means of near-field excitation. Adv. Funct. Mater. 16, 469–476 (2006).

    Article  Google Scholar 

  23. McNeill, C. R. & Dastoor, P. C. Photocurrent pattern formation in polymer/methanofullerene blends imaged by near-field scanning photocurrent microscopy. J. Appl. Phys. 99, 033502 (2006).

    Article  Google Scholar 

  24. Chiesa, M. et al. Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes. Nano Lett. 5, 559–563 (2005).

    Article  Google Scholar 

  25. Hoppe, H. et al. Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. Nano Lett. 5, 269–274 (2005).

    Article  Google Scholar 

  26. Russell, D. M. et al. Efficient light harvesting in a photovoltaic diode composed of a semiconductor conjugated copolymer blend. Appl. Phys. Lett. 80, 2204–2206 (2002).

    Article  Google Scholar 

  27. Koster, L. J. A., Smits, E. C. P., Mihailetchi, V. D. & Blom, P. W. M. Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005).

    Article  Google Scholar 

  28. Burgi, L., Richards, T. J., Friend, R. H. & Sirringhaus, H. Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129–6137 (2003).

    Article  Google Scholar 

  29. Silveira, W. R. & Marohn, J. A. Microscopic view of charge injection in an organic semiconductor. Phys. Rev. Lett. 93, 116104 (2004).

    Article  Google Scholar 

  30. Burgi, L., Richards, T., Chiesa, M., Friend, R. H. & Sirringhaus, H. A microscopic view of charge transport in polymer transistors. Synth. Met. 146, 297–309 (2004).

    Article  Google Scholar 

  31. Palermo, V., Palma, M. & Samori, P. Electronic characterization of organic thin films by Kelvin probe force microscopy. Adv. Mater. 18, 145–164 (2006).

    Article  Google Scholar 

  32. Muller, E. M. & Marohn, J. A. Microscopic evidence for spatially inhomogeneous charge trapping in pentacene. Adv. Mater. 17, 1410–1414 (2005).

    Article  Google Scholar 

  33. Ramsdale, C. M. et al. The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. J. Appl. Phys. 92, 4266–4270 (2002).

    Article  Google Scholar 

  34. Ramsdale, C. M. et al. ESEM imaging of polyfluorene blend cross-sections for organic devices. Physica E 14, 268–271 (2002).

    Article  Google Scholar 

  35. Snaith, H. J., Greenham, N. C. & Friend, R. H. The origin of collected charge and open-circuit voltage in blended polyfluorene photovoltaic devices. Adv. Mater. 16, 1640–1645 (2004).

    Article  Google Scholar 

  36. Arias, A. C. et al. Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing. Appl. Phys. Lett. 80, 1695–1697 (2002).

    Article  Google Scholar 

  37. Tevaarwerk, E., Keppel, D. G., Rugheimer, P., Lagally, M. G. & Eriksson, M. A. Quantitative analysis of electric force microscopy: The role of sample geometry. Rev. Sci. Instrum. 76, 053707 (2005).

    Article  Google Scholar 

  38. Koster, L. J. A., Mihailetchi, V. D., Ramaker, R. & Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl. Phys. Lett. 86, 123505 (2005).

    Article  Google Scholar 

  39. Morteani, A. C., Friend, R. H. & Silva, C. Exciton trapping at heterojunctions in polymer blends. J. Chem. Phys. 122, 244906 (2005).

    Article  Google Scholar 

  40. Barker, J. A., Ramsdale, C. M. & Greenham, N. C. Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices. Phys. Rev. B 67, 075205 (2003).

    Article  Google Scholar 

  41. Tanase, C., Meijer, E. J., Blom, P. W. M. & de Leeuw, D. M. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003).

    Article  Google Scholar 

  42. Bucknall, D. G. Influence of interfaces on thin polymer film behaviour. Prog. Mater. Sci. 49, 713–786 (2004).

    Article  Google Scholar 

  43. McNeill, C. R. et al. Nanoscale quantitative chemical mapping of conjugated polymer blends. Nano Lett. 6, 1202–1206 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank O. Reid and Y. Chen for their experimental assistance, Asylum Research for their continuing help, M. Chiesa and R. Shikler for their comments on the manuscript and H. Snaith for his comments and for valuable discussions. This material is based on work supported by the National Science Foundation (DMR 0449422) and the STC Program of the National Science Foundation (DMR 0120967).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Ginger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1-S8 (PDF 5514 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffey, D., Ginger, D. Time-resolved electrostatic force microscopy of polymer solar cells. Nature Mater 5, 735–740 (2006). https://doi.org/10.1038/nmat1712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing