Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orientation selection in dendritic evolution

Abstract

Dendritic crystal growth patterns have fascinated scientists for several centuries. Much of the aesthetic appeal of these patterns stems from the hierarchical structure of primary-, secondary-, and higher-order branches, which typically grow along principal crystallographic axes. Atypical growth directions have also been observed. Here, we demonstrate both computationally and experimentally that the range of possible dendrite growth directions, and hence the morphological diversity of the resulting dendritic structures, is much richer than previously anticipated. In particular, we show that primary dendrite growth directions can vary continuously between different crystallographic directions as a function of the composition-dependent anisotropy parameters. The study combines phase-field simulations of equiaxed dendritic growth and directional freezing of Al–Zn alloys. Both simulations and experiments exhibit continuous changes of direction from 〈100〉 to 〈110〉 for an underlying cubic symmetry. These results have important implications for controlling the microstructure of a wide range of cast alloys that solidify dendritically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orientation selection map from minimum interfacial stiffness.
Figure 2: Equiaxed dendrites and growth directions from phase-field simulations.
Figure 3: Orientation selection map from phase-field simulations.
Figure 4: Columnar dendrites and growth directions from experiments.

Similar content being viewed by others

References

  1. Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28 (1980).

    Article  Google Scholar 

  2. Karma, A. in Branching in Nature (eds Fleury, V., Gouyet, J. F. & Lonetti, M.) Ch. XI, 365 (Les Houches, vol. 13, EDP Sciences, Springer, 2001).

    Book  Google Scholar 

  3. Trivedi, R., Liu, S. & Williams, S. Interface pattern formation in nonlinear dissipative systems. Nature Mater. 1, 157–159 (2002).

    Article  Google Scholar 

  4. Ben-Jacob, E. & Garik, P. The formation of patterns in non-equilibrium growth. Nature 343, 523–530 (1990).

    Article  Google Scholar 

  5. Fleury, V. Branched fractal patterns in non-equilibrium electrochemical deposition from oscillatory nucleation and growth. Nature 390, 145–148 (1997).

    Article  Google Scholar 

  6. Boettinger, W. J., Warren, J. A., Beckermann, C. & Karma, A. Phase-field simulation of solidification. Ann. Rev. Mater. Res. 32, 163–194 (2002).

    Article  Google Scholar 

  7. Gránásy, L. et al. Growth of 'dizzy dendrites' in a random field of foreign particles. Nature Mater. 2, 92–96 (2003).

    Article  Google Scholar 

  8. Gránásy, L., Pusztai, T., Börzsönyi, T., Warren, J. A. & Douglas, J. F. A general mechanism of polycrystalline growth. Nature Mater. 2, 645–650 (2003).

    Article  Google Scholar 

  9. Langer, J. S. in Chance and Matter (eds Souletie, J., Vannimenus, J. & Stora, R.) 629–711 (Les Houches, Session XLVI, North Holland, Amsterdam, 1987).

    Google Scholar 

  10. Barbieri, A. & Langer, J. S. Predictions of dendritic growth rates in the linearized solvability theory. Phys. Rev. A 39, 5314–5325 (1989).

    Article  Google Scholar 

  11. Kessler, D., Koplik, J. & Levine, H. Pattern selection in fingered growth phenomena. Adv. Phys. 37, 255–339 (1988).

    Article  Google Scholar 

  12. Ben Amar, M. & Brener, E. Theory of pattern selection in three dimensional nonaxisymmetric dendritic growth. Phys. Rev. Lett. 71, 589–592 (1993).

    Article  Google Scholar 

  13. Ivantsov, G. P. Temperature field around spheroidal, cylindrical and acicular crystal growing in a supercooled melt. Doklady Akad. Nauk. SSSR 58, 567–569 (1947).

    Google Scholar 

  14. Karma, A. & Rappel, W. J. Numerical simulations of three-dimensional dendritic growth. Phys. Rev. Lett. 77, 4050–4053 (1996).

    Article  Google Scholar 

  15. Karma, A. & Rappel, W. J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1998).

    Article  Google Scholar 

  16. Karma, A. Phase-field methods. Encyclopedia of Materials: Science and Technology 7, 6873–6886 (2001).

    Google Scholar 

  17. Plapp, M. & Karma, A. Multiscale random-walk algorithm for simulating interfacial pattern formation. Phys. Rev. Lett. 84, 1740–1743 (2000).

    Article  Google Scholar 

  18. Plapp, M. & Karma, A. Multiscale finite-difference-diffusion-Monte-Carlo method of simulating dendritic solidification. J. Comp. Phys. 165, 592–619 (2000).

    Article  Google Scholar 

  19. Provatas, N., Goldenfeld, N. & Dantzig, J. Efficient computation of dendritic microstructures using adaptive mesh refinement. Phys. Rev. Lett. 80, 3308–3311 (1998).

    Article  Google Scholar 

  20. Bragard, J., Karma, A., Lee, Y. H. & Plapp, M. Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts. Interface Sci. 10, 121–136 (2002).

    Article  Google Scholar 

  21. Hoyt, J. J., Asta, M. & Karma, A. Atomistic and continuum modeling of dendritic solidification. Mater. Sci. Eng. R 41, 121–163 (2003).

    Article  Google Scholar 

  22. Hoyt, J. J., Asta, M. & Karma, A. Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett. 86, 5530–5533 (2001).

    Article  Google Scholar 

  23. Hoyt, J. J. & Asta, M. Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Phys. Rev. B 65, 214106 (2002).

    Article  Google Scholar 

  24. Hoyt, J. J., Asta, M. & Karma, A. Atomistic simulation method for computing the kinetic coefficient in solid-liquid systems. Interface Sci. 10, 181–189 (2002).

    Article  Google Scholar 

  25. Asta, M., Hoyt, J. J. & Karma, A. Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations. Phys. Rev. B 66, 100101 (2002).

    Article  Google Scholar 

  26. Sun, D. Y., Asta, M., Hoyt, J. J., Mendelev, M. I. & Srolovitz, D. J. Crystal-melt interfacial free energies in metals:fcc versus bcc. Phys. Rev. B 69, 020102 (2004).

    Article  Google Scholar 

  27. Sun, D. Y., Asta, M. & Hoyt, J. J. Crystal-melt interfacial free energies and mobilities in fcc and bcc Fe. Phys. Rev. B 69, 174103 (2004).

    Article  Google Scholar 

  28. Sun, D. Y., Asta, M. & Hoyt, J. J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Phys. Rev. B 69, 024108 (2004).

    Article  Google Scholar 

  29. Morris, J. R. The complete mapping of the anisotropic free energy of the crystal-melt interface in Al. Phys. Rev. B 66, 144104 (2002).

    Article  Google Scholar 

  30. Sun, D. Y. et al. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Phys. Rev. B 73, 024116 (2006).

    Article  Google Scholar 

  31. Liu, S., Napolitano, R. E. & Trivedi, R. Measurement of anisotropy of crystal-melt interfacial energy for a binary Al-CU alloy. Acta Mater. 49, 4271–4276 (2001).

    Article  Google Scholar 

  32. Napolitano, R. E. & Liu, S. Three-dimensional crystal-melt Wulff-shape and interfacial stiffness in the Al-Sn binary system. Phys. Rev. B 70, 214103 (2004).

    Article  Google Scholar 

  33. Pettersen, K. & Ryum, M. Crystallography of directionally solidified Magnesium alloy AZ91. Metall. Trans. A 20, 847–852 (1989).

    Article  Google Scholar 

  34. Pettersen, K., Lohne, O. & Ryum, M. Dendritic solidification of Magnesium alloy AZ91. Metall. Trans. A 21, 221–230 (1990).

    Article  Google Scholar 

  35. Chan, S.-K., Reimer, H.-H. & Kahlweit, M. On the stationary growth shapes of NH4Cl dendrites. J. Cryst. Growth 32, 303–315 (1976).

    Article  Google Scholar 

  36. Henry, S., Jarry, P., Jouneau, P.-H. & Rappaz, M. Electron backscattered diffraction investigation of the texture of feathery crystals in aluminum alloys. Metall. Mater. Trans. A 28A, 207–213 (1997).

    Article  Google Scholar 

  37. Henry, S., Jarry, P. & Rappaz, M. 〈110〉 Dendrite growth in aluminum feathery grains. Metall. Mater. Trans. A 29A, 2807–2817 (1998).

    Article  Google Scholar 

  38. Henry, S., Minghetti, T. & Rappaz, M. Dendrite growth morphologies in aluminium alloys. Acta Mater. 46, 6431–6443 (1998).

    Article  Google Scholar 

  39. Henry, S. Study of the Nucleation and Growth of Feathery Grains in Aluminum alloys, Ph.D. Thesis, EPFL Lausanne (1999).

  40. Semoroz, A. Experimental Study and Modeling of Nucleation and Growth During Solidification of Al and Zn Coatings. Ph.D. Thesis, EPFL Lausanne (1999).

  41. Semoroz, A., Durandet, Y. & Rappaz, M. EBSD characterization of dendrite growth directions, texture and misorientations in hot-dipped Al-Zn-Si coatings. Acta Metall. Mater. 49, 529–541 (2001).

    Article  Google Scholar 

  42. Von der Lage, F. & Bethe, H. A. A method for obtaining electronic eigenfunctions and eigenvalues in solids with an application to sodium. Phys. Rev. 71, 612–622 (1947).

    Article  Google Scholar 

  43. Fehlner, W. R. & Vosko, S. H. A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys. 54, 2159–2169 (1976).

    Article  Google Scholar 

  44. Gudgel, K. A. & Jackson, K. A. Oscillatory growth of directionally solidified ammonium chloride dendrites. J. Cryst. Growth 225, 264–267 (2001).

    Article  Google Scholar 

  45. Brener, E. & Levine, H. Growth of non-reflection-symmetric dendrites. Phys. Rev. A 43, 883–887 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy, Office of Basic Energy Sciences under contract DE-FG02-92ER45471 as well as the DOE Computational Materials Science Network program (T.H. and A.K.). The financial support of the Fonds National Suisse de la recherche scientifique, Bern, Switzerland (Grant No 200021-105144) is also gratefully acknowledged (F.G. and M.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Karma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haxhimali, T., Karma, A., Gonzales, F. et al. Orientation selection in dendritic evolution. Nature Mater 5, 660–664 (2006). https://doi.org/10.1038/nmat1693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing