Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-Curie-temperature ferromagnetism in self-organized Ge1−xMnx nanocolumns

Abstract

The emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix. The average diameter of these nanocolumns is 3nm and their spacing is 10nm. Their composition is close to Ge2Mn, which corresponds to an unknown germanium-rich phase, and they have a uniaxially elongated diamond structure. Their Curie temperature is higher than 400K. Magnetotransport reveals a pronounced anomalous Hall effect up to room temperature. A giant positive magnetoresistance is measured from 7,000% at 30K to 200% at 300K and 9T, with no evidence of saturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transmission electron micrographs of an 80-nm-thick Ge0.94Mn0.06 film.
Figure 2: Mn chemical maps and Mn profiles derived from electron energy-loss spectroscopy.
Figure 3: Magnetic measurements using a SQUID magnetometer.
Figure 4: In-plane magnetotransport measured on 200-μm-wide Hall bars from a Ge0.94Mn0.06 film.

Similar content being viewed by others

References

  1. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nature Mater. 4, 195–202 (2005).

    Article  Google Scholar 

  2. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  3. Dietl, T. Ferromagnetic semiconductors. Semicond. Sci. Technol. 17, 377–392 (2002).

    Article  Google Scholar 

  4. Timm, C. Disorder effects in diluted magnetic semiconductors. J. Phys. Condens. Matter 15, R1865–R1896 (2003).

    Article  Google Scholar 

  5. Sato, K., Katayama-Yoshida, H. & Dederichs, P. H. High Curie temperature and nano-scale spinodal decomposition phase in dilute magnetic semiconductors. Jpn J. Appl. Phys. 44, L948–L951 (2005).

    Article  Google Scholar 

  6. Ohno, H., Munekata, H., Penney, T., von Molnar, S. & Chang, L. L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

    Article  Google Scholar 

  7. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  Google Scholar 

  8. Ferrand, D. et al. Carrier-induced ferromagnetism in p- Zn1−xMnxTe . Phys. Rev. B 63, 085201 (2001).

    Article  Google Scholar 

  9. Jungwirth, T. et al. Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys. Rev. B 72, 165204 (2005).

    Article  Google Scholar 

  10. Park, Y. D. et al. A Group-IV ferromagnetic semiconductor MnxGe1−x . Science 295, 651–654 (2002).

    Article  Google Scholar 

  11. Li, A. P., Shen, J., Thompson, J. R. & Weitering, H. H. Ferromagnetic percolation in MnxGe1−x dilute magnetic semiconductor. Appl. Phys. Lett. 86, 152507–152509 (2005).

    Article  Google Scholar 

  12. Cho, S. et al. Ferromagnetism in Mn-doped Ge. Phys. Rev. B 66, 033303 (2002).

    Article  Google Scholar 

  13. Pinto, N. et al. Magnetic and electronic transport percolation in epitaxial Ge1−xMnx films. Phys. Rev. B 72, 165203 (2005).

    Article  Google Scholar 

  14. Tsui, F. et al. Novel germanium-based magnetic semiconductors. Phys. Rev. Lett. 91, 177203–177206 (2003).

    Article  Google Scholar 

  15. Braak, H. et al. Magnetic characteristics of epitaxial Ge(Mn,Fe) diluted films-a new room temperature magnetic semiconductor? J. Magn. Magn. Mater. 286, 46–50 (2005).

    Article  Google Scholar 

  16. Kang, J.-S. et al. Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors. Phys. Rev. Lett. 94, 147202 (2005).

    Article  Google Scholar 

  17. Sugahara, S., Lee, K. L., Yada, S. & Tanaka, M. Precipitation of amorphous ferromagnetic semiconductor phase in epitaxially grown Mn-doped Ge thin films. Jpn J. Appl. Phys. 44, L1426–L1429 (2005).

    Article  Google Scholar 

  18. Dormann, J. L., Fiorani, D. & Tronc, E. Advances in Chemical Physics (Wiley, New York, 1997).

    Google Scholar 

  19. Goswami, R. et al. Growth of ferromagnetic nanoparticles in Ge:Fe thin films. Appl. Phys. Lett. 86, 032509 (2005).

    Article  Google Scholar 

  20. Goswami, R., Kioseoglou, G., Hanbicki, A. T., Jonker, B. T. & Spanos, G. Formation of Cr-germanide nanoparticles during growth of epitaxial Ge-Cr thin films. Acta Mater. 52, 2419–2427 (2004).

    Article  Google Scholar 

  21. Park, Y. D. et al. Magnetoresistance of Mn:Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix. Appl. Phys. Lett. 78, 2739–2741 (2001).

    Article  Google Scholar 

  22. D'Orazio, F. et al. Magnetooptical study of Mn ions implanted in Ge. IEEE Trans. Magn. 38, 2856 (2002).

    Article  Google Scholar 

  23. Massalski, T. B. (ed.) Binary Alloy Phase Diagrams 2nd edn, Vol. 2, 1964 (American Society for Metals, Metals Park, Ohio, 1990).

  24. Wachtel, E. & Henig, E.-T. Aufbau des systems mangan-germanium. Z. Metallkd. 60, 243–248 (1969).

    Google Scholar 

  25. Zhang, Y., Jiang, Q., Smith, D. J. & Drucker, J. Growth and characterization of Si1−xMnx alloys on Si(100). J. Appl. Phys. 98, 033512 (2005).

    Article  Google Scholar 

  26. Schulthess, T. C. & Butler, W. H. Electronic structure and magnetic interactions in Mn doped semiconductors. J. Appl. Phys. 89, 7021–7023 (2001).

    Article  Google Scholar 

  27. Beleggia, M., Tandon, S., Zhu, Y. & De Graef, M. On the magnetostatic interactions between nanoparticles of arbitrary shape. J. Magn. Magn. Mater. 278, 270–284 (2004).

    Article  Google Scholar 

  28. Fruchart, O., Klaua, M., Bartel, J. & Kirschner, J. Self-organized growth of nanosized vertical magnetic Co pillars on Au(111). Phys. Rev. Lett. 83, 2769–2772 (1999).

    Article  Google Scholar 

  29. Darques, M., Encinas, A., Vila, L. & Piraux, L. Tailoring of the c-axis orientation and magnetic anisotroy in electrodeposited Co nanowires. J. Phys. C 16, S2279–S2286 (2004).

    Google Scholar 

  30. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001).

    Article  Google Scholar 

  31. Kossacki, P. et al. Spin engineering of carrier-induced magnetic ordering in (Cd,Mn)Te quantum wells. Physica E 21, 943–946 (2004).

    Article  Google Scholar 

  32. Song, Y. P. et al. Physical origin of the ferromagnetic ordering above room temperature in GaMnN nanowires. J. Phys. C 17, 5073–5085 (2005).

    Google Scholar 

  33. Kazakova, O., Kulkarni, J. S., Holmes, J. D. & Demokritov, S. O. Room temperature ferromagnetism in Ge1−xMnx nanowires. Phys. Rev. B 72, 094415 (2005).

    Article  Google Scholar 

  34. Sze, S. M. Physics of Semiconductors Devices (Wiley, New York, 1981).

    Google Scholar 

  35. Schklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).

    Book  Google Scholar 

  36. Woodbury, H. H. & Tyler, W. W. Properties of germanium doped with manganese. Phys. Rev. 100, 659–662 (1955).

    Article  Google Scholar 

  37. Solin, S. A., Thio, T., Hines, D. R. & Heremans, J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science 289, 1530–1532 (2000).

    Article  Google Scholar 

  38. Van Esch, A. et al. Interplay between the magnetic and transport properties in the III-V diluted magnetic semiconductor Ga1−xMnxAs . Phys. Rev. B 56, 13103–13112 (1997).

    Article  Google Scholar 

  39. Golikova, O. A., Moizhes, B. Y. & Stilbans, L. S. Hole mobility of germanium as a function of concentration and temperature. Sov. Phys. Solid State 3, 2259–2265 (1962).

    Google Scholar 

  40. Berkowitz, A. E. et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 68, 3745–3748 (1992).

    Article  Google Scholar 

  41. Akinaga, H. et al. Negative magnetoresistance in GaAs with magnetic MnAs nanoclusters. Appl. Phys. Lett. 72, 3368–3370 (1998).

    Article  Google Scholar 

  42. Sawicki, M. et al. Influence of s-d exchange interaction on the conductivity of Cd1−xMnxSe:In in the weakly localized regime. Phys. Rev. Lett. 56, 508–511 (1986).

    Article  Google Scholar 

  43. Shapira, Y., Oliveira, N. F., Becla, P. & Vu, T. Q. Magnetoresistance and Hall effect near the metal-insulator transition of n-type Cd0.95Mn0.05Te . Phys. Rev. B 41, 5931–5941 (1990).

    Article  Google Scholar 

  44. Chazalviel, J.-N. Spin-dependent Hall effect in semiconductors. Phys. Rev. B 11, 3918–3934 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Jamet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamet, M., Barski, A., Devillers, T. et al. High-Curie-temperature ferromagnetism in self-organized Ge1−xMnx nanocolumns. Nature Mater 5, 653–659 (2006). https://doi.org/10.1038/nmat1686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing