Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasonic metamaterials with negative modulus

Abstract

The emergence of artificially designed subwavelength electromagnetic materials, denoted metamaterials1,2,3,4,5,6,7,8,9,10, has significantly broadened the range of material responses found in nature. However, the acoustic analogue to electromagnetic metamaterials has, so far, not been investigated. We report a new class of ultrasonic metamaterials consisting of an array of subwavelength Helmholtz resonators with designed acoustic inductance and capacitance. These materials have an effective dynamic modulus with negative values near the resonance frequency. As a result, these ultrasonic metamaterials can convey acoustic waves with a group velocity antiparallel to phase velocity, as observed experimentally. On the basis of homogenized-media theory, we calculated the dispersion and transmission, which agrees well with experiments near 30 kHz. As the negative dynamic modulus leads to a richness of surface states with very large wavevectors, this new class of acoustic metamaterials may offer interesting applications, such as acoustic negative refraction and superlensing below the diffraction limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A new class of ultrasonic metamaterials consisting of arrays of subwavelength Helmholtz resonators.
Figure 2: Ultrasonic experiments demonstrating the negative dynamic modulus of the acoustic metamaterials near 32 kHz.
Figure 3: Measured and calculated transmission (amplitude ratio) as a function of frequency between upstream and downstream detectors.

Similar content being viewed by others

References

  1. Veselago, V. G. Electrodynamics of substances with simultaneously negative values of sigma and mu. Sov. Phys. Uspekhi-USSR 10, 509–514 (1968).

    Article  Google Scholar 

  2. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  Google Scholar 

  3. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  Google Scholar 

  4. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  Google Scholar 

  5. Wiltshire, M. C. K. et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291, 849–851 (2001).

    Article  Google Scholar 

  6. Iyer, A. K., Kremer, P. C. & Eleftheriades, G. V. Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Opt. Express 11, 696–708 (2003).

    Article  Google Scholar 

  7. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  Google Scholar 

  8. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    Article  Google Scholar 

  9. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  Google Scholar 

  10. Ziolkowski, R. W. & Heyman, E. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E 64, 056625 (2001).

    Article  Google Scholar 

  11. Lakes, R. S., Lee, T., Bersie, A. & Wang, Y. C. Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001).

    Article  Google Scholar 

  12. Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  Google Scholar 

  13. Goffaux, C. et al. Evidence of Fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett. 88, 225502 (2002).

    Article  Google Scholar 

  14. Li, J. & Chan, C. T. Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).

    Article  Google Scholar 

  15. Sigalas, M. M. et al. Classical vibrational modes in phononic lattices: theory and experiment. Z. Kristallogr. 220, 765–809 (2005).

    Google Scholar 

  16. Yang, S. X. et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).

    Article  Google Scholar 

  17. Hu, X. H., Chan, C. T. & Zi, J. Two-dimensional sonic crystals with Helmholtz resonators. Phys. Rev. E 71, 055601R (2005).

    Google Scholar 

  18. Kinsler, L. E. Fundamentals of Acoustics 3rd edn (Wiley, New York, 1982).

    Google Scholar 

  19. Yang, S. X. et al. Ultrasound tunneling through 3D phononic crystals. Phys. Rev. Lett. 88, 104301 (2002).

    Article  Google Scholar 

  20. Halevi, P. in Electromagnetic Surface Modes (ed. Boardman, A. D.) Ch. 7 (Wiley, New York, 1982).

    Google Scholar 

  21. Arakawa, E. T., Williams, M. W., Hamm, R. N. & Ritchie, R. H. Effect of damping on surface plasmon dispersion. Phys. Rev. Lett. 31, 1127–1129 (1973).

    Article  Google Scholar 

  22. Lee, H. T. & Poon, A. W. Fano resonances in prism-coupled square micropillars. Opt. Lett. 29, 5–7 (2004).

    Article  Google Scholar 

  23. Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafarirouhani, B. Acoustic band-structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993).

    Article  Google Scholar 

  24. de Espinosa, F. R. M., Jimenez, E. & Torres, M. Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998).

    Article  Google Scholar 

  25. Martinez-Sala, R. et al. Sound-attenuation by sculpture. Nature 378, 241 (1995).

    Article  Google Scholar 

  26. Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004).

    Article  Google Scholar 

  27. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  Google Scholar 

  28. Cubukcu, E., Aydin, K., Ozbay, E., Foteinopolou, S. & Soukoulis, C. M. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91, 207401 (2003).

    Article  Google Scholar 

  29. Sugimoto, N. & Horioka, T. Dispersion characteristics of sound-waves in a tunnel with an array of Helmholtz resonators. J. Acoust. Soc. Am. 97, 1446–1459 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the ONR/DARPA Multidisciplinary University Research Initiative (MURI) (grant N00014-01-1-0803) and the NSF Nanoscale Science and Engineering Center (NSEC) (grant DMI-0327077). The authors also thank A. Mal at the University of California, Los Angeles for allowing us to use his ultrasonic measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figure S1 (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, N., Xi, D., Xu, J. et al. Ultrasonic metamaterials with negative modulus. Nature Mater 5, 452–456 (2006). https://doi.org/10.1038/nmat1644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing