Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase separation in superoxygenated La2-xSrxCuO4+y

Abstract

The complex interplay between superconducting and magnetic phases remains poorly understood. Here, we report on the phase separation of doped holes into separate magnetic and superconducting regions in superoxygenated La2−xSrxCuO4+y, with various Sr contents. Irrespective of Sr-doping, excess oxygen raises the superconducting onset to 40 K with a coexisting magnetic spin-density wave that also orders near 40 K in each of our samples. The magnetic region is closely related to the anomalous, 1/8-hole-doped magnetic versions of La2CuO4, whereas the superconducting region is optimally doped. The two phases are probably the only truly stable ground states in this region of the phase diagram. This simple two-component system is a candidate for electronic phase separation in cuprate superconductors, and a key to understanding seemingly conflicting experimental observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Field-cooled d.c. magnetization (Meissner fraction) in a field of 10 G versus temperature for La2−xSrxCuO4+y.
Figure 2: ZF-μSR spectra for La1.91Sr0.09CuO4+y obtained at 5 K and at 40 K.
Figure 3: ZF-μSR spectra obtained for some of our superoxygenated samples at 5 K and the frequencies obtained at the same temperature.
Figure 4: Superconducting volume fraction (Meissner fraction) versus magnetic volume fraction for La2−xSrxCuO4+y.
Figure 5: Three-dimensional, Sr–O–temperature phase diagram for La2−xSrxCuO4+y.

Similar content being viewed by others

References

  1. Zaanen, J. & Gunnarsson, O. Charge magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40, 7391–7394 (1989).

    Article  Google Scholar 

  2. Emery, V. J., Kivelson, S. A. & Lin, H. Q. Phase-seperation in the T-J model. Phys. Rev. Lett. 64, 475–478 (1990).

    Article  Google Scholar 

  3. Hellberg, C. S. & Manousakis, E. Phase separation at all interaction strengths in the t-J model. Phys. Rev. Lett. 78, 4609–4612 (1997).

    Article  Google Scholar 

  4. Chubukov, A. V., Pines, D. & Schmalian, J. A. in Spin Fluctuation Model for d-wave Superconductivity in The Physics of Conventional and Unconventional Superconductors (eds Bennemann, K. H. & Ketterson, J. B.) Ch. 7, 495–579 (Springer, Berlin, 2004).

    Google Scholar 

  5. Demler, E., Sachdev, S. & Ying, Z. Spin-ordering quantum transitions of superconductors in magnetic field. Phys. Rev. Lett. 87, 067202 (2001).

    Article  Google Scholar 

  6. Moodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J. & Shelton, R. N. Superconducting properties of La2−xBaxCuO4 . Phys. Rev. B 38, 4596–4600 (1988).

    Article  Google Scholar 

  7. Nachumi, B. et al. Muon spin relaxation study of the stripe phase order in La1.6−xNd0.4SrxCuO4 and related 214 cuprates. Phys. Rev. B 58, 8760–8772 (1998).

    Article  Google Scholar 

  8. Lee, Y. S. et al. Neutron-scattering study of spin-density wave order in the superconducting state of excess-oxygen-doped La2CuO4+y . Phys. Rev. B 60, 3643–3654 (1999).

    Article  Google Scholar 

  9. Savici, A. et al. Muon spin relaxation studies of incommensurate magnetism and superconductivity in stage-4 La2CuO4.11 and La1.88Sr0.12CuO4 . Phys. Rev. B 66, 014524 (2002).

    Article  Google Scholar 

  10. Savici, A. et al. Static magnetism in superconducting stage-4 La2CuO4+y (y=0.12). Physica B 289–290, 338–342 (2000).

    Article  Google Scholar 

  11. Lee, Y. S. et al. Neutron scattering study of the effects of dopant disorder on the superconductivity and magnetic order in stage-4 La2CuO4+y . Phys. Rev. B 69, 020502 (2004).

    Article  Google Scholar 

  12. Khaykovich, B. et al. Enhancement of long-range magnetic order by magnetic field in superconducting La2CuO4+y . Phys. Rev. B 66, 014528 (2002).

    Article  Google Scholar 

  13. Johnston, D. C. et al. Phase separation and doped hole segregation in La2CuO4+d and La2−xSrxCuO4+d . Physica C 235–240, 257–260 (1994).

    Article  Google Scholar 

  14. Rial, C., Morán, E., Alario-Franco, M. A., Amado, U. & Anderson, N. H. Structural and superconducting properties of La2−xSrxCuO4+y (0<x<0.15) prepared by room temperature chemical oxidation. Physica C 254, 233–248 (1995).

    Article  Google Scholar 

  15. Jorgensen, J. D., Dabrowski, B., Pei, S., Hinks, D. G. & Soderholm, L. Superconducting phase of La2CuO4+δ: A superconducting composition resulting from phase separation. Phys. Rev. B 38, 11337–11345 (1988).

    Article  Google Scholar 

  16. Ansaldo, E. J. et al. Magnetic properties of the superconducting ‘superoxide’ La2CuO4+δ . Phys. Rev. B 40, 2555–2557 (1989).

    Article  Google Scholar 

  17. Wells, B. O. et al. Intercalation and staging behaviour in super-oxygenated La2CuO4+δ . Z. Phys. B 100, 535–545 (1996).

    Article  Google Scholar 

  18. Xiong, X. et al. Evidence of in-plane superstructure formation in phase separated and staged single crystal La2CuO4+δ . Phys. Rev. Lett. 76, 2997–3000 (1996).

    Article  Google Scholar 

  19. Wells, B. O. et al. Incommensurate spin fluctuations in high-transition temperature superconductors. Science 277, 1067–1071 (1997).

    Article  Google Scholar 

  20. Niedermayer, Ch. et al. Common phase diagram for antiferromagnetism in La2−xSrxCuO4 and Y1−xCaxBa2Cu3O6 as seen by muon spin rotation. Phys. Rev. Lett. 80, 3843–3846 (1998).

    Article  Google Scholar 

  21. Luke, G. M. et al. Static magnetic order in La1.875Ba0.125CuO4 . Physica C 185–189, 1175–1176 (1991).

    Article  Google Scholar 

  22. Yamada, K. et al. Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La2−xSrxCuO4 . Phys. Rev. B 57, 6165–6172 (1998).

    Article  Google Scholar 

  23. Hucker, M. et al. Oxygen and strontium codoping of La2NiO4: room-temperature phase diagrams. Phys. Rev. B 70, 064105 (2004).

    Article  Google Scholar 

  24. Axe, J. D. et al. Structural phase transformation and superconductivity in La2−xBaxCuO4 . Phys. Rev. Lett. 62, 2751–2754 (1989).

    Article  Google Scholar 

  25. Singer, P. M., Hunt, W. A. & Imai, T. 63Cu NQR evidence for spatial variation of hole concentration in La2−xSrxCuO4 . Phys. Rev. Lett. 88, 047602 (2002).

    Article  Google Scholar 

  26. Lang, K. M. et al. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ . Nature 415, 412–416 (2002).

    Article  Google Scholar 

  27. Howald, C., Fournier, P. & Kapitulnik, A. Inherent inhomogeneities in tunneling spectra of Bi2Sr2CaCu2O8−x crystals in the superconducting state. Phys. Rev. B 64, 100504 (2001).

    Article  Google Scholar 

  28. Dordevic, S. V., Komoya, S., Ando, Y. & Basov, D. N. Josephson plasmon and inhomogeneous superconducting state in La2−xSrxCuO4 . Phys. Rev. Lett. 91, 167401 (2003).

    Article  Google Scholar 

  29. Katano, S., Sato, M., Yamada, K., Suzuki, T. & Fukase, T. Enhancement of static antiferromagnetic correlations by magnetic field in a superconductor La2−xSrxCuO4 (with x=0.12). Phys. Rev. B 62, R14677–R14680 (2000).

    Article  Google Scholar 

  30. Lake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002).

    Article  Google Scholar 

  31. Miller, R. I. et al. Evidence for static magnetism in the vortex cores of ortho-II YBa2Cu3O6.50 . Phys. Rev. Lett. 88, 137002 (2002).

    Article  Google Scholar 

  32. Mitrovic, V. I. et al. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor. Nature 413, 501–504 (2002).

    Article  Google Scholar 

  33. Kakuyanagi, K., Kumagai, K., Matsuda, Y. & Hasegawa, M. Antiferromagnetic vortex core in Tl2Ba2CuO6+δ studied by nuclear magnetic resonance. Phys. Rev. Lett. 90, 197003 (2003).

    Article  Google Scholar 

  34. Machtoub, L. H., Keimer, B. & Yamada, K. Large magnetic field-induced spectral weight enhancement of high-energy spin excitations in La1.88Sr0.12CuO4 . Phys. Rev. Lett. 94, 107009 (2005).

    Article  Google Scholar 

  35. Savici, A. T. et al. Muon spin relaxation studies of magnetic-field-induced effects in high Tc superconductors. Phys. Rev. Lett. 95, 157001 (2005).

    Article  Google Scholar 

  36. Dagotto, E. Open questions in CMR manganites relevance of clustered states and analogies with other compounds including the cuprates. New J. Phys. 7, 1–28 (2005).

    Article  Google Scholar 

  37. Kivelson, S. A., Aeppli, G. & Emery, V. J. Thermodynamics of the interplay between magnetism and high-temperature superconductivity. Proc. Natl Acad. Sci. 98, 11903–11907 (2001).

    Article  Google Scholar 

  38. Chou, F. C., Belk, N. R., Kastner, M. A., Birgeneau, R. J. & Aharony, A. Spin-glass behavior in La1.96Sr0.04CuO4 . Phys. Rev. Lett. 75, 2204–2207 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Ronnow, S. Kivelson, and E. Dagotto for the thoughtful discussions and K. Conder for carrying out TGA measurements on our samples. The research at the University of Connecticut was supported by the US-DOE through contract DE-FG02-00ER45801, research at Brookhaven was supported by US-DOE, Office of Basic Energy Sciences, Division of Materials Science, under contract DE-AC02-98CH10886, and research at MIT (F.-C.C.) was partially supported by the MRSEC Program of the NSF under award number DMR 02-13282. CCMS-NTU was partially supported by the National Science Council of Taiwan under contract NSC-95-2112-M-002-026. L.U. is supported by the Danish Research Council for Technology and Production Sciences under the Framework Programme on Superconductivity. The muon work was carried out at the Swiss Muon Source, PSI, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barrett O. Wells.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary material, supplementary figures 1-5 and table 1 (PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohottala, H., Wells, B., Budnick, J. et al. Phase separation in superoxygenated La2-xSrxCuO4+y. Nature Mater 5, 377–382 (2006). https://doi.org/10.1038/nmat1633

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1633

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing