Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic principles of nanoparticle evolution to zeolite crystals

Abstract

Precursor nanoparticles that form spontaneously on hydrolysis of tetraethylorthosilicate in aqueous solutions of tetrapropylammonium (TPA) hydroxide evolve to TPA-silicalite-1, a molecular-sieve crystal that serves as a model for the self-assembly of porous inorganic materials in the presence of organic structure-directing agents. The structure and role of these nanoparticles are of practical significance for the fabrication of hierarchically ordered porous materials and molecular-sieve films, but still remain elusive. Here we show experimental findings of nanoparticle and crystal evolution during room-temperature ageing of the aqueous suspensions that suggest growth by aggregation of nanoparticles. A kinetic mechanism suggests that the precursor nanoparticle population is distributed, and that the 5-nm building units contributing most to aggregation only exist as an intermediate small fraction. The proposed oriented-aggregation mechanism should lead to strategies for isolating or enhancing the concentration of crystal-like nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composition space.
Figure 2: Characterization of precursor nanoparticles from C3.
Figure 3: Emergence and evolution of silicalite-1 crystals in C3.
Figure 4: TEM characterization of TPA-silicalite-1 crystals present in C3 after 305 days of ageing (crystal yield less than 5%).
Figure 5: Attachment of precursor nanoparticles on mica surfaces by liquid phase in situ AFM imaging.
Figure 6: Simulation data from mathematical model of nanoparticle ageing and growth mechanism.

Similar content being viewed by others

References

  1. Corma, A. & Davis, M. E. Issues in the synthesis of crystalline molecular sieves: Towards the crystallization of low framework-density structures. ChemPhysChem 5, 304–313 (2004).

    Article  Google Scholar 

  2. Yang, S., Navrotsky, A., Wesolowski, D. & Pople, J. Study on synthesis of TPA-silicalite-1 from initially clear solutions of various base concentrations by in situ calorimetry, potentiometry, and SAXS. Chem. Mater. 16, 210–219 (2004).

    Article  Google Scholar 

  3. Schoeman, B. & Regev, O. A study of the initial stage in the crystallization of TPA-silicalite-1. Zeolites 17, 447–456 (1996).

    Article  Google Scholar 

  4. Fedeyko, J., Rimer, J., Lobo, R. & Vlachos, D. Spontaneous formation of silica nanoparticles in basic solutions of small tetraalkylammonium cations. J. Phys. Chem. B 108, 12271–12275 (2004).

    Article  Google Scholar 

  5. Mintova, S., Olson, N., Senker, J. & Bein, T. Mechanism of the transformation of silica precursor solutions into Si-MFI zeolite. Angew. Chem. Int. Edn 41, 2558–2561 (2002).

    Article  Google Scholar 

  6. Cheng, C.-H. & Shantz, D. F. Nanoparticle formation and zeolite growth in TEOS/organocation/water solutions. J. Phys. Chem. B 109, 7266–7274 (2005).

    Article  Google Scholar 

  7. de Moor, P. P., Beelen, T. & van Santen, R. In situ observation of nucleation and crystal growth in zeolite synthesis. A small-angle X-ray scattering investigation on Si-TPA-MFI. J. Phys. Chem. B 103, 1639–1650 (1999).

    Article  Google Scholar 

  8. Houssin, C. et al. Combined in situ Si NMR and small-angle X-ray scattering study of precursors in MFI zeolite formation from silicic acid in TPAOH solutions. Phys. Chem. Chem. Phys. 5, 3518–3524 (2003).

    Article  Google Scholar 

  9. Cheng, C. H. & Shantz, D. Silicalite-1 growth from clear solution: effect of the structure-directing agent on growth kinetics. J. Phys. Chem. B 109, 13912–13920 (2005).

    Article  Google Scholar 

  10. Twomey, T. A. M., Mackay, M., Kuipers, H. P. C. E. & Thompson, R. W. In situ observation of silicalite nucleation and growth: A light-scattering study. Zeolites 14, 162–168 (1994).

    Article  Google Scholar 

  11. Choi, J., Ghosh, S., Lai, Z. & Tsapatsis, M. Uniformly a-oriented MFI zeolite films by secondary growth. Angew. Chem. Int. Edn 45, 1154–1158 (2006).

    Article  Google Scholar 

  12. Drews, T. O. & Tsapatsis, M. Progress in manipulating zeolite morphology and related applications. Curr. Opin. Colloid Interface Sci. 10, 233–238 (2005).

    Article  Google Scholar 

  13. Schoeman, B. J. Analysis of the nucleation and growth of TPA-silicalite-1 at elevated temperatures with the emphasis on colloidal stability. Micropor. Mesopor. Mater. 22, 9–22 (1998).

    Article  Google Scholar 

  14. Nikolakis, V., Kokkoli, E., Tirrell, M., Tsapatsis, M. & Vlachos, D. Zeolite growth by addition of subcolloidal particles: modeling and experimental validation. Chem. Mater. 12, 845–853 (2000).

    Article  Google Scholar 

  15. Kirschhock, C. E. A. et al. Zeosil nanoslabs: building blocks in nPr4N+-mediated synthesis of MFI zeolite. Angew. Chem. Int. Edn 40, 2637–2640 (2001).

    Article  Google Scholar 

  16. Corkery, R. W. & Ninham, B. W. Low-temperature synthesis and characterization of a stable colloidal TPA-silicalite-1 suspension. Zeolites 18, 379–386 (1997).

    Article  Google Scholar 

  17. deMoor, P.-P. E. A., Beelen, T. P. M., van Santen, R. A., Beck, L. W. & Davis, M. E. Si-MFI crystallization using a “Dimer” and “Trimer” of TPA studied with small-angle X-ray scattering. J. Phys. Chem. B 104, 7600–7611 (2000).

    Article  Google Scholar 

  18. Glatter, O. The interpretation of real-space information from small-angle scattering experiments. J. Appl. Crystallogr. 12, 166–175 (1979).

    Article  Google Scholar 

  19. Bergmann, A., Fritz, G. & Glatter, O. Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J. Appl. Crystallogr. 33, 1212–1216 (2000).

    Article  Google Scholar 

  20. Gilbert, B., Huang, F., Zhang, H., Waychunas, G. A. & Banfield, J. F. Nanoparticles: strained and stiff. Science 305, 651–654 (2004).

    Article  Google Scholar 

  21. Gawrys, K. L. & Kilpatrick, P. K. Asphaltenic aggregates are polydisperse oblate cylinders. J. Colloid Interface Sci. 288, 325–334 (2005).

    Article  Google Scholar 

  22. Orthaber, D., Bergmann, A. & Glatter, O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 33, 218–225 (2000).

    Article  Google Scholar 

  23. Jorge, M., Auerbach, S. M. & Monson, P. A. Modeling spontaneous formation of precursor nanoparticles in clear-solution zeolite synthesis. J. Am. Chem. Soc. 127, 14388–14400 (2005).

    Article  Google Scholar 

  24. Burleson, D. J. & Penn, R. L. Two step growth of goethite from ferrihydrite. Langmuir 22, 402–409 (2006).

    Article  Google Scholar 

  25. Buyanov, R. & Krivoruchko, O. Development of a theory of crystallization of difficultly soluble metal hydroxides and of scientific bases for the preparation of catalysts from substances of this class. Kinetics Catal. 17, 666–675 (1976).

    Google Scholar 

  26. Buyanov, R., Krivoruchko, O. & Ryzhak, I. Mechanism of the nucleation and growth of crystals of iron hydroxide and iron oxide in mother liquors. Kinetics Catal. 13, 470–478 (1972).

    Google Scholar 

  27. Mackenzie, R. C. & Meldau, R. The ageing of sesquioxide gels. I. Iron oxide gels. Mineral Mag. 32, 153–165 (1959).

    Google Scholar 

  28. Navrotsky, A. Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. Proc. Natl Acad. Sci. 101, 12096–12101 (2004).

    Article  Google Scholar 

  29. Penn, R. Kinetics of oriented aggregation. J. Phys. Chem. B 108, 12707–12712 (2004).

    Article  Google Scholar 

  30. Penn, R. L. & Banfield, J. F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998).

    Article  Google Scholar 

  31. Mintova, S., Olson, N. H., Valtchev, V. & Bein, T. Mechanism of zeolite a nanocrystal growth from colloids at room temperature. Science 283, 958–960 (1999).

    Article  Google Scholar 

  32. Mintova, S., Olson, N. H. & Bein, T. Electron microscopy reveals the nucleation mechanism of zeolite Y from precursor colloids. Angew. Chem. Int. Edn 38, 3201–3204 (1999).

    Article  Google Scholar 

  33. Bonilla, G. et al. Zeolite (MFI) crystal morphology control using organic structure-directing agents. Chem. Mater. 16, 5697–5705 (2004).

    Article  Google Scholar 

  34. Wollast, R. & Garrels, R. Diffusion coefficient of silica in seawater. Nature 229, 94 (1971).

    Google Scholar 

  35. Corma, A. & Diaz-Cabanas, M. J. Amorphous microporous molecular sieves with different pore dimensions and topologies: synthesis, characterization, and catalytic activity. Micropor. Mesopor. Mater. 89, 39–46 (2006).

    Article  Google Scholar 

  36. Rimer, J., Vlachos, D. & Lobo, R. Evolution of self-assembled silica-tetrapropylammonium nanoparticles at elevated temperatures. J. Phys. Chem. B 109, 12762–12771 (2005).

    Article  Google Scholar 

  37. Van Hyning, D. L., Klemperer, W. G. & Zukoski, C. F. Silver nanoparticle formation: Predictions and verification of the aggregative growth model. Langmuir 17, 3128–3135 (2001).

    Article  Google Scholar 

  38. Glatter, O. A new method for the evaluation of small-angle scattering data. J. Appl. Crystallogr. 10, 415–421 (1977).

    Article  Google Scholar 

  39. NIST SANS Data Reduction. <http://www.ncnr.nist.gov/programs/sans/data/data_red.html>.

  40. Talmon, Y. in In Modern Characterization Methods of Surfactant Systems (ed. Binks, B. P.) (Marcel Dekker, New York, 1999).

    Google Scholar 

  41. Nagahara, L. A., Hashimoto, K., Fujishima, A., Snowden-Ifft, D. & Price, P. B. Mica etch pits as a height calibration source for atomic force microscopy. J. Vac. Sci. Technol. B 12, 1694–1697 (1994).

    Article  Google Scholar 

  42. Ulman, A. et al. Concentration-driven surface transition in the wetting of mixed alkanethiol monolayers on gold. J. Am. Chem. Soc. 113, 1499–1506 (1991).

    Article  Google Scholar 

  43. Evans, S. D., Sharma, R. & Ulman, A. Contact angle stability: reorganization of monolayer surfaces? Langmuir 7, 156–161 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by NSF (NIRT CTS-0103010 and CTS-05 22518). The HRTEM work was supported in part by NSF-MRI EAR-0320641 and the MRSEC Program of NSF under Award Number DMR-0212302. M.K. acknowledges support from NSF (DMS-041386). Characterization was carried out at the Minnesota Characterization Facility, which receives support from NSF through the National Nanotechnology Infrastructure Network. Numerical simulations were carried out using the facilities of the Supercomputing Institute for Digital Simulation and Advanced Computation at the University of Minnesota. We thank A. Parr for lending us the SAXSess instrument; F. S. Bates for providing access to SANS analysis at NIST and for helpful discussions; and R. Bedard, D. G. Vlachos, V. Nikolakis, R. F. Lobo and V. Hatzimanikatis for input at various stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tsapatsis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 - S9 (PDF 7591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, T., Drews, T., Ramanan, H. et al. Mechanistic principles of nanoparticle evolution to zeolite crystals. Nature Mater 5, 400–408 (2006). https://doi.org/10.1038/nmat1636

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1636

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing