Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasticity, healing and shakedown in sharp-asperity nanoindentation

Abstract

Spatially localized stress fields produced by instrumented, sharp indentation probes are a route to testing the mechanical properties of materials at the smallest length scales. Here we provide direct experimental measurement of indentation plasticity with contact strain fields involving up to a few thousand atoms. We observe two types of nanoscale plasticity: on the pristine surface, high-resolution sensing shows an overall smooth, remarkably reversible indentation response interjected by sudden discrete drops in indenter load. The jumps often occur in pairs with pop-in motion during loading healed by a corresponding pop-out motion on the unload stroke to define a compact hysteresis loop. Despite the general reversibility, cyclic indentation at a single sample position leads to a subtle plastic ratchet and shakedown behaviour with displacements correlated to the underlying gold lattice constant. Our results concur with a previously established picture of thermally activated atomistic plasticity, but suggest a new mechanism at reduced scales that suppresses permanent mass transport.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indenter and sample reconstruction.
Figure 2: Transient appearance of hysteresis loops during indentation into pristine surface.
Figure 3: Plastic ratcheting and shakedown of atomic-scale contact.
Figure 4: Emergence of lattice offsets after shakedown.
Figure 5: Anatomy of a hysteresis loop.

Similar content being viewed by others

References

  1. Pethica, J. B., Hutchings, R. & Oliver, W. C. Hardness measurement at penetration depths as small as 20-nm. Phil. Mag. A 48, 593–606 (1983).

    Article  Google Scholar 

  2. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  Google Scholar 

  3. Fisher-Cripps, A. C. Nanoindentation (Springer, New York, 2002).

    Book  Google Scholar 

  4. Sutton, A. P. & Pethica, J. B. Inelastic flow processes in nanometer volumes of solids. J. Phys. Condens. Matter 2, 5317–5326 (1990).

    Article  Google Scholar 

  5. Landman, U., Luedtke, W. D., Burnham, N. A. & Colton, R. J. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990).

    Article  Google Scholar 

  6. Kelchner, C. L., Plimpton, S. J. & Hamilton, J. C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998).

    Article  Google Scholar 

  7. Gannepalli, A. & Mallapragada, S. K. Atomistic studies of defect nucleation during nanoindentation of Au (001). Phys. Rev. B 66, 104103 (2002).

    Article  Google Scholar 

  8. Li, J., Van-Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    Article  Google Scholar 

  9. Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M. & Nix, W. D. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901–920 (2003).

    Article  Google Scholar 

  10. Horstemeyer, M. F., Baskes, M. I. & Plimpton, S. J. Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49, 4363–4374 (2001).

    Article  Google Scholar 

  11. Knap, J. & Ortiz, M. Effect of indenter radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003).

    Article  Google Scholar 

  12. Chiu, Y. L. & Ngan, A. H. W. Time-dependant characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599–1611 (2002).

    Article  Google Scholar 

  13. Schuh, C. A., Mason, J. K. & Lund, A. C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater. 4, 617–621 (2005).

    Article  Google Scholar 

  14. Gane, N. & Bowden, F. P. Microdeformation of solids. J. Appl. Phys. 39, 1432–1435 (1968).

    Article  Google Scholar 

  15. Corcoran, S. G., Colton, R. J., Lilleodden, E. T. & Gerberich, W. W. Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057–R16060 (1997).

    Article  Google Scholar 

  16. de la Fuente, O. R. et al. Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunnelling microscopy and atomistic simulations. Phys. Rev. Lett. 88, 036101 (2002).

    Article  Google Scholar 

  17. Fraxedas, J., Garcia-Manyes, S., Gorostiza, P. & Sanz, F. Nanoindentation: Toward the sensing of atomic interactions. Proc. Natl Acad. Sci. 99, 5228–5232 (2002).

    Article  Google Scholar 

  18. Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E. & Kohlstedt, D. L. The injection of plasticity by millinewton contacts. Acta Mater. 43, 1569–1576 (1995).

    Article  Google Scholar 

  19. Kiely, J. D. & Houston, J. E. Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588–12594 (1998).

    Article  Google Scholar 

  20. Fink, H. W. Mono-atomic tips for scanning tunneling microscopy. IBM J. Res. Dev. 30, 460–465 (1986).

    Article  Google Scholar 

  21. Cross, G. et al. Adhesion interaction between atomically defined tip and sample. Phys. Rev. Lett. 80, 4685–4688 (1998).

    Article  Google Scholar 

  22. Miller, M. K., Cerezo, A., Hetherington, M. G. & Smith, G. D. W. Atom Probe Field Ion Microscopy (Clarenden, Oxford, 1996).

    Google Scholar 

  23. Stalder, A. & Dürig, U. Ultrahigh-vacuum compatible cooling and vibration isolation stage. Rev. Sci. Instrum. 64, 3644–3646 (1993).

    Article  Google Scholar 

  24. Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, Cambridge, 1985).

    Book  Google Scholar 

  25. Van-Vliet, K. J., Li, J., Zhu, T., Yip, S. & Suresh, S. Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67, 104105 (2003).

    Article  Google Scholar 

  26. Reed-Hill, R. E. Physical Metallurgy Principles (Van Norstrand, New York, 1973).

    Google Scholar 

  27. Hofer, W. A., Fisher, A. J., Wolkow, R. A. & Grütter, P. Surface relaxations, current enhancements, and absolute distances in high resolution scanning tunnelling microscopy. Phys. Rev. Lett. 87, 236104 (2001).

    Article  Google Scholar 

  28. Olesen, L. et al. Apparent barrier height in scanning tunnelling microscopy revisited. Phys. Rev. Lett. 76, 1485–1488 (1996).

    Article  Google Scholar 

  29. Israelachvili, J. Intermolecular and Surface Forces (Academic, San Diego, 1992).

    Google Scholar 

  30. Dürig, U., Zuger, O. & Pohl, D. W. Observation of metallic adhesion using the scanning tunnelling microscope. Phys. Rev. Lett. 65, 349–352 (1990).

    Article  Google Scholar 

  31. Rose, J. H., Ferrante, J. & Smith, J. R. Universal binding-energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47, 675–678 (1981).

    Article  Google Scholar 

  32. Maugis, D. & Pollock, H. M. Surface forces, deformation and adherence at metal microcontacts. Acta Metall. 32, 1323–1334 (1984).

    Article  Google Scholar 

  33. Maugis, D. Contact, Adhesion, and Rupture of Elastic Solids (Springer, New York, 2000).

    Book  Google Scholar 

  34. Luan, B. Q. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).

    Article  Google Scholar 

  35. Gerberich, W. W. et al. Reverse plasticity in single crystal silicon nanospheres. Int. J. Plasticity 21, 2391–2405 (2005).

    Article  Google Scholar 

  36. Kramer, D. E., Yoder, K. B. & Gerberich, W. W. Surface constrained plasticity: oxide rupture and the yield point process. Phil. Mag. A 81, 2033 (2001).

    Article  Google Scholar 

  37. Stalder, A. & Dürig, U. Study of yielding mechanics in nanometer-sized Au contacts. Appl. Phys. Lett. 68, 637–639 (1996).

    Article  Google Scholar 

  38. Agrait, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  Google Scholar 

  39. Joyce, S. A. & Houston, J. E. A new force sensor incorporating force-feedback control for interfacial force microscopy. Rev. Sci. Instrum. 62, 710–715 (1991).

    Article  Google Scholar 

  40. Flynn, C. P. Point defect reactions at surfaces and in bulk metals. Phys. Rev. B 71, 085422 (2005).

    Article  Google Scholar 

  41. Hannon, J. B. et al. Surface self-diffusion by vacancy motion: Island ripening on Cu(001). Phys. Rev. Lett. 79, 2506–2509 (1997).

    Article  Google Scholar 

  42. Ondrejcek, M., Rajappan, M., Swiech, W. & Flynn, C. P. Step fluctuation spectroscopy of Au(111) by LEEM. Surf. Sci. 574, 111–122 (2005).

    Article  Google Scholar 

  43. van Gastel, R., Somfai, E., van Albada, S. B., van Saarloos, W. & Frenken, J. W. M. Nothing moves a surface: Vacancy mediated surface diffusion. Phys. Rev. Lett. 86, 1562–1565 (2001).

    Article  Google Scholar 

  44. Walko, R. J. Field-ion microscopy of metal-metal contacts. Surf. Sci. 70, 302–324 (1978).

    Article  Google Scholar 

  45. Müller, E. W. & Nishikawa, O. Adhesion or cold welding of materials in space environment. ASTM Special Publ. 431, 67 (1968).

    Google Scholar 

  46. Ohmae, N. Field ion microscopy of microdeformation induced by metallic contacts. Phil. Mag. A 74, 1319–1327 (1996).

    Article  Google Scholar 

  47. Fian, A. & Leisch, M. Study on tip-substrate interactions by STM and APFIM. Ultramicroscopy 95, 189–197 (2003).

    Article  Google Scholar 

  48. Kuipers, L., Hoogeman, M. S. & Frenken, J. W. M. Jump to contact and neck formation between Pb surfaces and a STM tip. Surf. Sci. 340, 231–244 (1995).

    Article  Google Scholar 

  49. Gimzewski, J. K. & Moller, R. Transition from the tunneling regime to point contact studied using scanning tunnelling microscopy. Phys. Rev. B 36, 1284–1287 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge useful discussions with J. Pethica, S. Biswas and H. Özgür Ozer. P.G. acknowledges financial support from the National Science and Engineering Research Council (NSERC) of Canada, Le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the Canadian Institute for Advanced Research (CIAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham L. W. Cross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, supplementary figures 1-4 and references (PDF 378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cross, G., Schirmeisen, A., Grütter, P. et al. Plasticity, healing and shakedown in sharp-asperity nanoindentation. Nature Mater 5, 370–376 (2006). https://doi.org/10.1038/nmat1632

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1632

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing