Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers

Abstract

Semiconductor microcavities offer unique means of controlling light–matter interactions in confined geometries, resulting in a wide range of applications in optical communications1 and inspiring proposals for quantum information processing and computational schemes2,3. Studies of spin dynamics in microcavities, a new and promising research field, have revealed effects such as polarization beats, stimulated spin scattering and giant Faraday rotation4,5,6,7,8. Here, we study the electron spin dynamics in optically pumped GaAs microdisc lasers with quantum wells and interface-fluctuation quantum dots9 in the active region. In particular, we examine how the electron spin dynamics are modified by the stimulated emission in the discs, and observe an enhancement of the spin-coherence time when the optical excitation is in resonance with a high-quality (Q5,000) lasing mode. This resonant enhancement, contrary to expectations from the observed trend in the carrier-recombination time, is then manipulated by altering the cavity design and dimensions. In analogy with devices based on excitonic coherence, this ability to engineer coherent interactions between electron spins and photons may provide new pathways towards spin-dependent quantum optoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Static and dynamical characteristics of microdiscs.
Figure 2: Resonantly enhanced spin coherence.
Figure 3: Temperature dependence.
Figure 4: Robust spin-coherence enhancement in smaller cavity.

Similar content being viewed by others

References

  1. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  Google Scholar 

  2. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  Google Scholar 

  3. Meier, F. & Awschalom, D. D. Spin-photon dynamics of quantum dots in two-mode cavities. Phys. Rev. B 70, 205329 (2004).

    Article  Google Scholar 

  4. Hallstein, S. et al. Manifestation of coherent spin precession in stimulated semiconductor dynamics. Phys. Rev. B 56, R7076–R7079 (1997).

    Article  Google Scholar 

  5. Lagoudakis, P. et al. Stimulated spin dynamics of polaritons in semiconductor microcavities. Phys. Rev. B 65, 161310 (2002).

    Article  Google Scholar 

  6. Cubian, D. P. et al. Photoinduced magneto-optic Kerr effects in asymmetric semiconductor microcavities. Phys. Rev. B 67, 45308 (2003).

    Article  Google Scholar 

  7. Martin, M. D., Aichmayr, G., Vina, L. & Andre, R. Polarization control of nonlinear emission of semiconductor microcavities. Phys. Rev. Lett. 89, 077402 (2002).

    Article  Google Scholar 

  8. Salis, G. & Moser, M. Faraday-rotation spectrum of electron spins in microcavity-embedded GaAs quantum wells. Phys. Rev. B 72, 115325 (2005).

    Article  Google Scholar 

  9. Brunner, K., Abstreiter, G., Bohm, G., Trankle, G. & Weimann, G. Sharp-line photoluminescence of excitons localized at GaAs/AlGaAs quantum well inhomogeneities. Appl. Phys. Lett. 64, 3320–3323 (1994).

    Article  Google Scholar 

  10. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    Article  Google Scholar 

  11. Baba, T., Inoshita, K., Sano, D., Nakagawa, A. & Nozaki, K. Microlasers based on photonic crystal concept. Int. Soc. Opt. Eng. 5000, 8–15 (2003).

    Google Scholar 

  12. Young, D. K., Zhang, L., Awschalom, D. D. & Hu, E. L. Coherent coupling dynamics in a quantum-dot microdisk laser. Phys. Rev. B 66, 081307 (2002).

    Article  Google Scholar 

  13. Wang, W. H. et al. Static and dynamic spectroscopy of (Al,Ga)As/GaAs microdisk lasers with interface fluctuation quantum dots. Phys. Rev. B 71, 155306 (2005).

    Article  Google Scholar 

  14. Bjork, G., Karlsson, A. & Yamamoto, Y. Definition of a laser threshold. Phys. Rev. A 50, 1675–1680 (1994).

    Article  Google Scholar 

  15. Luo, K. J. et al. Dynamics of GaAs/AlGaAs microdisk lasers. Appl. Phys. Lett. 77, 2304–2306 (2000).

    Article  Google Scholar 

  16. Crooker, S. A., Awschalom, D. D., Baumberg, J. J., Flack, F. & Samarth, N. Optical spin resonance and transverse spin relaxation in magnetic-semiconductor quantum wells. Phys. Rev. B 56, 7574–7588 (1997).

    Article  Google Scholar 

  17. Crooker, S. A., Awschalom, D. D. & Samarth, N. Time-resolved Faraday rotation spectroscopy of spin dynamics in digital magnetic heterostructures. IEEE J. Sel. Top. Quantum Electron. 1, 1082–1092 (1995).

    Article  Google Scholar 

  18. Kikkawa, J. M., Smorchova, I. P., Samarth, N. & Awschalom, D. D. Room temperature spin memory in two dimensional electron gases. Science 277, 1284–1287 (1997).

    Article  Google Scholar 

  19. Gundogdu, K. et al. Electron and hole spin dynamics in semiconductor quantum dots. Appl. Phys. Lett. 86, 113111 (2005).

    Article  Google Scholar 

  20. Michler, P. et al. Laser emission from quantum dots in microdisk structures. Appl. Phys. Lett. 77, 184–186 (2000).

    Article  Google Scholar 

  21. Nakagawa, A., Satoru, I. & Baba, T. Photonic molecule laser composed of GaInAsP microdisks. Appl. Phys. Lett. 86, 041112 (2005).

    Article  Google Scholar 

  22. Srinivasan, K., Borselli, M., Johnson, T. J., Barclay, P. E. & Painter, O. Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Appl. Phys. Lett. 86, 151105 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from DARPA/QUIST and NSF, and thank E. L. Hu, R. J. Epstein and F. Meier for illuminating discussions. Work performed in part at the UCSB and Penn State Nanofabs, members of the NSF NNIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figure S1 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Wang, W., Mendoza, F. et al. Enhancement of spin coherence using Q-factor engineering in semiconductor microdisc lasers. Nature Mater 5, 261–264 (2006). https://doi.org/10.1038/nmat1587

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1587

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing