Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

From colour fingerprinting to the control of photoluminescence in elastic photonic crystals

Abstract

In photonic crystals (PCs), strong scattering and destructive wave interference lead to a modification of the photon density of states in particular energy regions and along certain crystallographic directions1,2. The consequences of this range from suppression and enhancement of luminescence3,4,5,6,7 to narrow-band bright reflections useful for colour sensors8,9, displays10 and tuneable filters11,12,13,14. Here we demonstrate large-area films of porous elastomeric photonic crystals (EPCs) that are compressively–decompressively cycled to reversibly shift the position of the photonic band structure over a large wavelength range. Owing to their low compressive threshold, such porous EPCs can be used for imaging that is pressure and time sensitive, for example, to obtain colour fingerprints with high accuracy. Furthermore, by incorporating luminescent PbS quantum dots in the EPCs, the photonic stop-gap can be tuned through the near-infrared (NIR) quantum dot photoluminescence (PL) peak. Thereby we demonstrate a tuneable modification of photonic characteristics, including the suppression and enhancement in emission and dynamic modification of luminescence lifetimes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps in the fabrication of EPC films.
Figure 2: Mechanical and optical response of EPC films to compressive pressure.
Figure 3: PC fingerprinting using EPC films.
Figure 4: Tuning of NIR PL properties from quantum dots incorporated into EPCs.

Similar content being viewed by others

References

  1. Lopez, C. Materials aspects of photonic crystals. Adv. Mater. 15, 1679–1704 (2003).

    Article  Google Scholar 

  2. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997).

    Article  Google Scholar 

  3. Ogawa, S. P., Imada, M., Yoshimoto, S., Okano, M. & Noda, S. Control of light emission by 3D photonic crystals. Science 305, 227–229 (2004).

    Article  Google Scholar 

  4. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

    Article  Google Scholar 

  5. Vlasov, Y. A., Luterova, K., Pelant, I., Honerlage, B. & Astratov, V. N. Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals. Appl. Phys. Lett. 71, 1616–1618 (1997).

    Article  Google Scholar 

  6. Yoshino, K. et al. Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal. Appl. Phys. Lett. 73, 3506–3508 (1998).

    Article  Google Scholar 

  7. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  8. Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).

    Article  Google Scholar 

  9. Li, Y. Y. et al. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045–2047 (2003).

    Article  Google Scholar 

  10. Arsenault, A. C., Miguez, H., Kitaev, V., Ozin, G. A. & Manners, I. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: A step towards photonic ink (P-Ink). Adv. Mater. 15, 503–507 (2003).

    Article  Google Scholar 

  11. Foulger, S. H. et al. Photonic bandgap composites. Adv. Mater. 13, 1898–1901 (2001).

    Article  Google Scholar 

  12. Foulger, S. H. et al. Photonic crystal composites with reversible high-frequency stop band shifts. Adv. Mater. 15, 685–689 (2003).

    Article  Google Scholar 

  13. Haacke, G., Panzer, H. P., Magliocco, L. G. & Asher, S. A. US patents 5,266,238, and 5,368,781 (1993).

  14. Li, Y. Y. et al. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 2045–2047 (2003).

    Article  Google Scholar 

  15. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  Google Scholar 

  16. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  Google Scholar 

  17. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    Article  Google Scholar 

  18. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    Article  Google Scholar 

  19. Nishimura, S. et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125, 6306–6310 (2003).

    Article  Google Scholar 

  20. Jiang, P., Bertone, J. F., Hwang, K. S. & Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    Article  Google Scholar 

  21. Wong, S., Kitaev, V. & Ozin, G. A. Colloidal crystal films: Advances in universality and perfection. J. Am. Chem. Soc. 125, 15589–15598 (2003).

    Article  Google Scholar 

  22. Asher, S. A., Holtz, J., Liu, L. & Wu, Z. J. Self-assembly motif for creating submicron periodic materials—polymerized crystalline colloidal arrays. J. Am. Chem. Soc. 116, 4997–4998 (1994).

    Article  Google Scholar 

  23. Jethmalani, J. M. & Ford, W. T. Diffraction of visible light by ordered monodisperse silica-poly(methyl acrylate) composite films. Chem. Mater. 8, 2138–2146 (1996).

    Article  Google Scholar 

  24. Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997).

    Article  Google Scholar 

  25. Miller, R. E. & Shenoy, V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000).

    Article  Google Scholar 

  26. Gibson, L. J. Cellular solids. Mater. Res. Soc. Bull. 2, 270–271 (2003).

    Article  Google Scholar 

  27. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article  Google Scholar 

  28. Lawrence, J. R. et al. Dynamic tuning of photoluminescent dyes in crystalline colloidal arrays. Adv. Mater. 17, 2344–2349 (2005).

    Article  Google Scholar 

  29. Koenderink, A. F., Bechger, L., Schriemer, H. P., Lagendijk, A. & Vos, W. L. Broadband fivefold reduction of vacuum fluctuations probed by dyes in photonic crystals. Phys. Rev. Lett. 88, 143903 (2002).

    Article  Google Scholar 

  30. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    Article  Google Scholar 

  31. Barth, M., Gruber, A. & Cichos, F. Spectral and angular redistribution of photoluminescence near a photonic stop band. Phys. Rev. B 72, 085129 (2005).

    Article  Google Scholar 

  32. Viasnoff-Schwoob, E. et al. Spontaneous emission enhancement of quantum dots in a photonic crystal wire. Phys. Rev. Lett. 95, 183901 (2005).

    Article  Google Scholar 

  33. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  34. Cademartiri, L. et al. Nanocrystals as precursors to flexible functional films. Small 1, 1184–1187 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

G.A.O., I.M. and S.J. are Government of Canada research chairs. The authors thank NSERC Canada, the University of Toronto and EC NoE Phoremost for financial support. G.v.F. acknowledges support through the Deutsche Forschungsgemeinschaft (DFG). The authors are grateful to N. Masson for capturing the optical colour images and movies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André C. Arsenault or Geoffrey A. Ozin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary movie S1

Supplementary movie S1 (MOV 13406 kb)

Supplementary movie S2

Supplementary movie S2 (MOV 8553 kb)

Supplementary figures S1 and S2

Supplementary figures S1 and S2 (PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsenault, A., Clark, T., von Freymann, G. et al. From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nature Mater 5, 179–184 (2006). https://doi.org/10.1038/nmat1588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1588

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing