Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Forced crumpling of self-avoiding elastic sheets

Abstract

Thin elastic sheets are important materials across length scales ranging from mesoscopic (polymerized membranes, clay platelets, virus capsids) to macroscopic (paper, metal foils). The crumpling of such sheets by external forces is characterized by the formation of a complex pattern of folds. We have investigated the role of self-avoidance, the fact that the sheets cannot self-intersect, for the crumpling process by large-scale computer simulations. At moderate compression, the force–compression relations of crumpled sheets for both self-avoiding and phantom sheets are found to obey universal power-law behaviours. However, self-avoiding sheets are much stiffer than phantom sheets and, for a given compression, develop many more folds. Moreover, self-avoidance is relevant already at very small volume fractions. The fold-length distribution for crumpled sheets is determined, and is found to be well-described by a log-normal distribution. The stiffening owing to self-avoidance is reflected in the changing nature of the sheet-to-sheet contacts from line-like to two-dimensionally extended with increasing compression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the computer experiments.
Figure 2: Three-dimensional shape of a cone and a crumpled sheet.
Figure 3: Radius and energy as a function of the external force.
Figure 4: Fold patterns and energy distributions of crumpled sheets.
Figure 5: Contacts between different parts of a crumpled self-avoiding sheet.
Figure 6: Uniaxial and radial compression of sheets in cylindrical confinement.

Similar content being viewed by others

References

  1. Erdös, P. & Graham, R. L. On packing squares with equal squares. J. Comb. Theory A 19, 119–123 (1975).

    Article  Google Scholar 

  2. Woodcock, L. V. Entropy difference between the f.c.c. and h.c.p. crystal structures. Nature 385, 141–143 (1997).

    Article  Google Scholar 

  3. Philipse, A. P. The random contact equation and its implications for (colloidal) rods in packings, suspensions and anisotropic powders. Langmuir 12, 1127–1133 (1996).

    Article  Google Scholar 

  4. Donev, A. et al. Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004).

    Article  Google Scholar 

  5. Maritan, A., Micheletti, C., Trovato, A. & Banavar, J. R. Optimal shapes of compact strings. Nature 406, 287–290 (2000).

    Article  Google Scholar 

  6. Odijk, T. Statics and dynamics of condensed DNA within phages and globules. Phil. Trans. R. Soc. A 362, 1497–1517 (2004).

    Article  Google Scholar 

  7. Smith, D. E. et al. The bacteriophage straight φ29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  Google Scholar 

  8. Kramer, E. M. & Witten, T. A. Stress condenstation in crushed elastic manifolds. Phys. Rev. Lett. 78, 1303–1306 (1997).

    Article  Google Scholar 

  9. Lobkovsky, A. E., Gentes, S., Li, H., Morse, D. & Witten, T. A. Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270, 1482–1485 (1995).

    Article  Google Scholar 

  10. Matan, K., Williams, R. B., Witten, T. A. & Nagel, S. R. Crumpling a thin sheet. Phys. Rev. Lett. 88, 076101 (2002).

    Article  Google Scholar 

  11. Lobkovsky, A. E. Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53, 3750–3759 (1996).

    Article  Google Scholar 

  12. Lobkovsky, A. E. & Witten, T. A. Properties of ridges in elastic membranes. Phys. Rev. E 55, 1577–1589 (1997).

    Article  Google Scholar 

  13. Åström, J. A., Timonen, J. & Karttunen, M. Crumpling of a stiff tethered membrane. Phys. Rev. Lett. 93, 244301 (2004).

    Article  Google Scholar 

  14. Gomes, M. A. F., Jyh, T. I., Ren, T. I., Rodrigues, I. M. & Furtado, C. B. S. Mechanically deformed crumpled surfaces. J. Phys. D 22, 1217–1221 (1989).

    Article  Google Scholar 

  15. Blair, D. L. & Kudrolli, A. The geometry of crumpled paper. Phys. Rev. Lett. 94, 166107 (2005).

    Article  Google Scholar 

  16. Seung, H. S. & Nelson, D. R. Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005–1018 (1988).

    Article  Google Scholar 

  17. Paterlini, M. G. & Ferguson, D. M. Constant temperature simulations using the Langevin equation with velocity verlet integration. Chem. Phys. 236, 243–252 (1998).

    Article  Google Scholar 

  18. Zhang, Z., Davis, H. T., Maier, R. S. & Kroll, D. M. Asymptotic shape of elastic networks. Phys. Rev. B 52, 5404–5413 (1995).

    Article  Google Scholar 

  19. Lidmar, J., Mirny, L. & Nelson, D. R. Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910 (2003).

    Article  Google Scholar 

  20. Ivanovska, I. L. et al. Bacteriophage capsids: Tough nanoshells with complex elastic properties. Proc. Natl Acad. Sci. USA 101, 7600–7605 (2004).

    Article  Google Scholar 

  21. Pantano, A., Boyce, M. C. & Parks, D. M. Nonlinear structural mechanics based modeling of carbon nanotube deformation. Phys. Rev. Lett. 91, 145504 (2003).

    Article  Google Scholar 

  22. Cerda, E., Chaieb, S., Melo, F. & Mahadevan, L. Conical dislocations in crumpling. Nature 401, 46–49 (1999).

    Article  Google Scholar 

  23. Liang, T. & Witten, T. A. Cresent singularities in crumpled sheets. Phys. Rev. E 71, 016612 (2005).

    Article  Google Scholar 

  24. DiDonna, B. A., Witten, T. A., Venkataramani, S. C. & Kramer, E. M. Singularities, structures and scaling in deformed m-dimensional elastic manifolds. Phys. Rev. E 65, 016603 (2001).

    Article  Google Scholar 

  25. Wood, A. J. Witten’s lectures on crumpling. Physica A 313, 83–109 (2002).

    Article  Google Scholar 

  26. Kantor, Y., Kardar, M. & Nelson, D. R. Tethered surfaces: statics and dynamics. Phys. Rev. A 35, 3056–3071 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. Kirchgeßner for help in developing the image-analysis procedure and D. M. Kroll and D. R. Nelson for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Vliegenthart or G. Gompper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary movie S1 (AVI 4550 kb)

Supplementary Information

Supplementary movie S2 (AVI 1112 kb)

Supplementary Information

Supplementary movie captions and supplementary figures S1, S2, S3 and S4 (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vliegenthart, G., Gompper, G. Forced crumpling of self-avoiding elastic sheets. Nature Mater 5, 216–221 (2006). https://doi.org/10.1038/nmat1581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing