Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical trapping and integration of semiconductor nanowire assemblies in water

Abstract

Semiconductor nanowires have received much attention owing to their potential use as building blocks of miniaturized electrical1, nanofluidic2 and optical devices3. Although chemical nanowire synthesis procedures have matured and now yield nanowires with specific compositions4 and growth directions5, the use of these materials in scientific, biomedical and microelectronic applications is greatly restricted owing to a lack of methods to assemble nanowires into complex heterostructures with high spatial and angular precision. Here we show that an infrared single-beam optical trap can be used to individually trap, transfer and assemble high-aspect-ratio semiconductor nanowires into arbitrary structures in a fluid environment. Nanowires with diameters as small as 20 nm and aspect ratios of more than 100 can be trapped and transported in three dimensions, enabling the construction of nanowire architectures that may function as active photonic devices. Moreover, nanowire structures can now be assembled in physiological environments, offering new forms of chemical, mechanical and optical stimulation of living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Setup for the trapping experiments and the procedure for nanowire docking at a surface.
Figure 2: Oscillations of optically trapped semiconductor nanowires.
Figure 3: Demonstration of nanowire junctions and assemblies built using optical trapping.

Similar content being viewed by others

References

  1. Wang, W. U., Chen, C., Lin, K. H., Fang, Y. & Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl Acad. Sci. USA 102, 3208–3212 (2005).

    Article  Google Scholar 

  2. Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005).

    Article  Google Scholar 

  3. Sirbuly, D. J., Law, M., Yan, H. Q. & Yang, P. D. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109, 15190–15213 (2005).

    Article  Google Scholar 

  4. Xia, Y. N. et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  Google Scholar 

  5. Kuykendall, T. et al. Crystallographic alignment of high-density gallium nitride nanowire arrays. Nature Mater. 3, 524–528 (2004).

    Article  Google Scholar 

  6. Smith, P. A. et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    Article  Google Scholar 

  7. Chen, M. et al. Tuning the response of magnetic suspensions. Appl. Phys. Lett. 82, 3310–3312 (2003).

    Article  Google Scholar 

  8. Messer, B., Song, J. H. & Yang, P. D. Microchannel networks for nanowire patterning. J. Am. Chem. Soc. 122, 10232–10233 (2000).

    Article  Google Scholar 

  9. Yang, P. Nanotechnology: Wires on water. Nature 425, 243–244 (2003).

    Article  Google Scholar 

  10. Law, M., Goldberger, J. & Yang, P. D. Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83–122 (2004).

    Article  Google Scholar 

  11. Nugent-Glandorf, L. & Perkins, T. T. Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. Opt. Lett. 29, 2611–2613 (2004).

    Article  Google Scholar 

  12. Korda, P., Spalding, G. C., Dufresne, E. R. & Grier, D. G. Nanofabrication with holographic optical tweezers. Rev. Sci. Instrum. 73, 1956–1957 (2002).

    Article  Google Scholar 

  13. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  Google Scholar 

  14. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  Google Scholar 

  15. Sato, S., Harada, Y. & Waseda, Y. Optical trapping of microscopic metal particles. Opt. Lett. 19, 1807–1809 (1994).

    Article  Google Scholar 

  16. Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

    Article  Google Scholar 

  17. Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature 394, 348–350 (1998).

    Article  Google Scholar 

  18. Yu, T., Cheong, F. C. & Sow, C. H. The manipulation and assembly of CuO nanorods with line optical tweezers. Nanotechnol. 15, 1732–1736 (2004).

    Article  Google Scholar 

  19. Gauthier, R. C. Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects. J. Opt. Soc. Am. B 14, 3323–3333 (1997).

    Article  Google Scholar 

  20. Gauthier, R. C., Ashman, M. & Grover, C. P. Experimental confirmation of the optical-trapping properties of cylindrical objects. Appl. Opt. 38, 4861–4869 (1999).

    Article  Google Scholar 

  21. Shelton, W. A., Bonin, K. D. & Walker, T. G. Nonlinear motion of optically torqued nanorods. Phys. Rev. E 71, 036204 (2005).

    Article  Google Scholar 

  22. Kress, H., Stelzer, E. H. K. & Rohrbach, A. Tilt angle dependent three-dimensional-position detection of a trapped cylindrical particle in a focused laser beam. Appl. Phys. Lett. 84, 4271–4273 (2004).

    Article  Google Scholar 

  23. Rubinsztein-Dunlop, H., Nieminen, T. A., Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quant. Chem. 30, 469–492 (1998).

    Article  Google Scholar 

  24. Wu, Y. Y. & Yang, P. D. Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13, 520–523 (2001).

    Article  Google Scholar 

  25. Johnson, J. C., Yan, H. Q., Yang, P. D. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003).

    Article  Google Scholar 

  26. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  Google Scholar 

  27. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988).

    Article  Google Scholar 

  28. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330, 769–771 (1987).

    Article  Google Scholar 

  29. Sirbuly, D. J. et al. Optical routing and sensing with nanowire assemblies. Proc. Natl Acad. Sci. USA 102, 7800–7805 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Choy, J. Feigelman, C. Hodges, the Yang Lab (A. Tao, H. Yan, A. Hochbaum and D. Sirbuly) and M. van Duijn. P.J.P. thanks the NSF for Graduate Research Support and H.S. thanks the Hertz Foundation. This work was supported in part by the University of California, Berkeley (J.L.), the Beckman Foundation and the Department of Energy (P.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peidong Yang or Jan Liphardt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1, 2 and 3; movie legends (PDF 222 kb)

Supplementary Information

Supplementary movie 1 (AVI 106 kb)

Supplementary Information

Supplementary movie 2 (AVI 278 kb)

Supplementary Information

Supplementary movie 3 (AVI 2798 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauzauskie, P., Radenovic, A., Trepagnier, E. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater 5, 97–101 (2006). https://doi.org/10.1038/nmat1563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing