Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of hydration on molecular junction transport

Abstract

The study of charge transport through increasingly complex small molecules will benefit from a detailed understanding of how contaminants from the environment affect molecular conduction. This should provide a clearer picture of the electronic characteristics of molecules by eliminating interference from adsorbed species. Here we use magnetically assembled microsphere junctions incorporating thiol monolayers to provide insight into changing electron transport characteristics resulting from exposure to air. Using this technique, current–voltage analysis and inelastic electron tunnelling spectroscopy (IETS) demonstrate that the primary interaction affecting molecular conduction is rapid hydration at the gold–sulphur contacts. We use IETS to present evidence for changing mechanisms of charge transport as a result of this interaction. The detrimental effects on molecular conduction discussed here are important for understanding electron transport through gold–thiol molecular junctions once exposed to atmospheric conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of hydration on microsphere junction I(V) characteristics.
Figure 2: Temperature and a.c. modulation dependence of microsphere junction IETS.
Figure 3: IETS analysis of anhydrous and hydrated alkanethiol microsphere junctions.
Figure 4: IETS analysis of anhydrous and hydrated OPE microsphere junctions.
Figure 5: Comparison of low-energy region in anhydrous and hydrated OPE IET spectra.

Similar content being viewed by others

References

  1. Tour, J. M. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architectures and Programming (World Scientific, River Edge, New Jersey, 2003).

    Book  Google Scholar 

  2. Carroll, R. L. & Gorman, C. B. The genesis of molecular electronics. Angew. Chem. Int. Edn 41, 4378–4400 (2002).

    Article  Google Scholar 

  3. Joachim, C. & Ratner, M. A. Molecular electronics: Some views on transport junctions and beyond. Proc. Natl Acad. Sci. 102, 8801–8808 (2005).

    Article  Google Scholar 

  4. Rakshit, T., Liang, G. C., Ghosh, A. W. & Datta, S. Silicon-based molecular electronics. Nano Lett. 4, 1803–1807 (2004).

    Article  Google Scholar 

  5. Seminario, J. M., Córdova, L. E. & Derosa, P. A. An ab initio approach to the calculation of current-voltage characteristics of programmable molecular devices. Proc. IEEE 91, 1958–1975 (2003).

    Article  Google Scholar 

  6. Seminario, J. M. & Yan, L. Ab initio analysis of electron currents in thioalkanes. Int. J. Quantum Chem. 102, 711–723 (2005).

    Article  Google Scholar 

  7. Seminario, J. M., Cruz, C. D. L., Derosa, P. A. & Yan, L. Nanometer-size conducting and insulating molecular devices. J. Phys. Chem. B 108, 17879–17885 (2004).

    Article  Google Scholar 

  8. Salomon, A. et al. Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15, 1881–1890 (2003).

    Article  Google Scholar 

  9. Selzer, Y. et al. Effect of local environment on molecular conduction: Isolated molecule versus self-assembled monolayer. Nano Lett. 5, 61–65 (2005).

    Article  Google Scholar 

  10. Wang, W., Lee, T. & Reed, M. A. Electronic transport in molecular self-assembled monolayer devices. Proc. IEEE 93, 1815–1824 (2005).

    Article  Google Scholar 

  11. Moore, A. M. et al. Molecular engineering and measurements to test hypothesized mechanisms in single molecule conductance switching. J. Am. Chem. Soc. 128, 1959–1967 (2006).

    Article  Google Scholar 

  12. Selzer, Y., Salomom, A. & Cahen, D. The importance of chemical bonding to the contact for tunneling through alkyl chains. J. Phys. Chem. B 106, 10432–10439 (2002).

    Article  Google Scholar 

  13. Basch, H., Cohen, R. & Ratner, M. A. Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching. Nano Lett. 5, 1668–1675 (2005).

    Article  Google Scholar 

  14. Chechik, V., Crooks, R. M. & Stirling, C. J. M. Reactions and reactivity in self-assembled monolayers. Adv. Mater. 12, 1161–1171 (2000).

    Article  Google Scholar 

  15. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  Google Scholar 

  16. Karpovich, D. S. & Blanchard, G. J. Vapor adsorption onto metal and modified interfaces: Evidence for adsorbate penetration of an alkanethiol monolayer on gold. Langmuir 13, 4031–4037 (1997).

    Article  Google Scholar 

  17. Anderson, M. R., Evaniak, M. N. & Zhang, M. Influence of solvent on the interfacial structure of self-assembled alkanethiol monolayers. Langmuir 12, 2327–2331 (1996).

    Article  Google Scholar 

  18. Pi, U. H. et al. Current flow through different phases of dodecanethiol self-assembled monolayer. Surf. Sci. 583, 88–93 (2005).

    Article  Google Scholar 

  19. Long, D. P. et al. Magnetic directed assembly of molecular junctions. Appl. Phys. Lett. 86, 153105–153107 (2005).

    Article  Google Scholar 

  20. Blum, A. S. et al. Molecularly inherent voltage-controlled conductance switching. Nature Mater. 4, 167–172 (2004).

    Article  Google Scholar 

  21. Kushmerick, J. G., Blum, A. S. & Long, D. P. Metrology for molecular electronics. Anal. Chim. Acta 568, 20–27 (2006).

    Article  Google Scholar 

  22. Poirier, G. E., Pylant, E. D. & White, J. M. Crystalline structures of pristine and hydrated mercaptohexanol self-assembled monolayers on Au(111). J. Chem. Phys. 104, 7325–7328 (1996).

    Article  Google Scholar 

  23. Rablen, P. R., Lockman, J. W. & Jorgensen, W. L. Ab initio study of hydrogen-bonded complexes of small organic molecules with water. J. Phys. Chem. A 102, 3782–3797 (1998).

    Article  Google Scholar 

  24. Steinwender, E. & Mikenda, W. Hydrogen bonding in 2-hydroxybenzoyl and 2-hydroxythiolbenzoyl compounds: Spectroscopic characterization and spectroscopic bond strength sequences. Monatsh. Chem. 125, 695–705 (1994).

    Article  Google Scholar 

  25. Cai, L. et al. Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions. Nano Lett. 5, 2365–2372 (2005).

    Article  Google Scholar 

  26. Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004).

    Article  Google Scholar 

  27. Wang, W., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004).

    Article  Google Scholar 

  28. Ho, W. Single molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    Article  Google Scholar 

  29. Troisi, A. & Ratner, M. A. Modeling the inelastic tunneling spectra of molecular junctions. Phys. Rev. B 72, 033408–033411 (2005).

    Article  Google Scholar 

  30. Paulsson, M., Frederiksen, T. & Brandbyge, M. Inelastic transport through molecules: Comparing first-principles calculations to experiments. Nano Lett. 6, 258–262 (2006).

    Article  Google Scholar 

  31. Jiang, J., Kula, M., Lu, W. & Luo, Y. First-principles simulations of inelastic electron tunneling spectroscopy of molecular electronic devices. Nano Lett. 5, 1551–1555 (2005).

    Article  Google Scholar 

  32. Seminario, J. M. & Cordova, L. E. Theoretical interpretation of intrinsic line widths observed in inelastic electron tunneling scattering experiments. J. Phys. Chem. A 108, 5142–5144 (2004).

    Article  Google Scholar 

  33. Lee, T., Wang, W. & Reed, M. A. Intrinsic electronic transport through alkanedithiol self-assembled monolayer. Japan. J. Appl. Phys. 44, 523–529 (2005).

    Article  Google Scholar 

  34. Lambe, J. & Jaklevic, R. C. Molecular vibration spectra by inelastic electron tunneling. Phys. Rev. 165, 821–832 (1968).

    Article  Google Scholar 

  35. Solomon, G. C. et al. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. J. Chem. Phys. 124, 094704 (2006).

    Article  Google Scholar 

  36. Krepps, M. K., Parkin, S. & Atwood, D. A. Hydrogen bonding with sulfur. Cryst. Growth Design 1, 291–297 (2001).

    Article  Google Scholar 

  37. Varsanyi, G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives (Wiley, New York, 1974).

    Google Scholar 

  38. Agnolet, G., Savitski, S. R. & Zimmerman, D. T. Zero bias features in self-assembling tunnel junctions. Physica B 284–288, 1840–1841 (2000).

    Article  Google Scholar 

  39. Troisi, A. & Ratner, M. A. Molecular transport junctions: Propensity rules for inelastic electron tunneling spectra. Nano Lett. 6, 1784–1788 (2006).

    Article  Google Scholar 

  40. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  Google Scholar 

  41. Smith, J. N., Hoffman, J. T., Shirin, Z. & Carrano, C. J. H-bonding interactions and control of thiolate nucleophilicity and specificity in model complexes of zinc metalloproteins. Inorg. Chem. 44, 2012–2017 (2005).

    Article  Google Scholar 

  42. Willey, T. M. et al. Rapid degradation of alkanethiol-based self-assembled monolayers on gold in ambient laboratory conditions. Surf. Sci. 576, 188–196 (2005).

    Article  Google Scholar 

  43. Stapleton, J. J. et al. Self-assembled oligo(phenylene-ethynylene) molecular electronic switch monolayers on gold: Structures and chemical stability. Langmuir 19, 8245–8255 (2003).

    Article  Google Scholar 

  44. Kudelski, A. Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review. Vib. Spectrosc. 39, 200–213 (2005).

    Article  Google Scholar 

  45. Richter, L. J. et al. Optical characterization of oligo(phenylene-ethynylene) self-assembled monolayers on gold. J. Phys. Chem. B 108, 12547–12559 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Kushmerick of the National Institute of Standards and Technology for helpful comments and density functional theory calculations and G. Malliaras of Cornell University for the fabrication of magnetic arrays. This work was supported by the Defense Advanced Research Projects Agency (DARPA), the Office of Naval Research (ONR), the Air Force Office of Scientific Research (AFOSR) and the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Contributions

D.P.L. is the inventor of the microsphere test bed and performed all surface preparations, device fabrications, environmental I(V) analysis, variable-temperature IETS and project planning. J.L.L. and B.A.M. performed environmental IETS. M.H.M., Y.Y., J.W.C. and J.M.T. performed organic synthesis of OPE molecules. M.A.R. and A.T. conducted theoretical modelling of IETS spectra. R.S. supplied funding support.

Corresponding author

Correspondence to David P. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1-12 (PDF 691 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, D., Lazorcik, J., Mantooth, B. et al. Effects of hydration on molecular junction transport. Nature Mater 5, 901–908 (2006). https://doi.org/10.1038/nmat1754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing