Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial control of the recombination zone in an ambipolar light-emitting organic transistor

Abstract

Organic semiconductors show efficient electroluminescence which has led to their commercialization in light-emitting diodes, but has also raised fundamental questions about their recombination and emission physics. Organic ambipolar field-effect transistors can support both hole and electron transport at the semiconductor–dielectric interface. Using their ability to emit light owing to charge recombination within the transistor channel should enable new ways to study the recombination physics and realize new electrooptical devices. Here we demonstrate ambipolar light-emitting transistors based on a semiconducting polymer with both efficient electron and hole transport and good photoluminescence efficiency. In our device configuration, electrons and holes injected from separate calcium and gold electrodes recombine radiatively within the channel. We can move the recombination zone with the applied gate and source–drain bias to any position within the channel. This provides a direct visualization and proof of coexisting electron and hole accumulation layers in an ambipolar transport regime.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic and characteristics of ambipolar OC1C10-PPV transistors.
Figure 2: Light-emission in constant gate voltage mode.
Figure 3: Light emission in constant current mode.
Figure 4: Modelling emission zone position as a function of gate voltage.

Similar content being viewed by others

References

  1. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  Google Scholar 

  2. Segal, M., Baldo, M. A., Holmes, R. J., Forrest, S. R. & Soos, Z. G. Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68, 075211 (2003).

    Article  Google Scholar 

  3. Morteani, A. C. et al. Barrier-free electron-hole capture in polymer blend heterojunction light-emitting diodes. Adv. Mater. 15, 1708–1712 (2003).

    Article  Google Scholar 

  4. Kajii, H., Taneda, T. & Ohmori, Y. Organic light-emitting diode fabricated on a polymer substrate for optical links. Thin Solid Films 438, 334–338 (2003).

    Article  Google Scholar 

  5. Bader, M. A. et al. Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching. J. Opt. Soc. Am. B 19, 2250–2262 (2002).

    Article  Google Scholar 

  6. Tessler, N. et al. Properties of light emitting organic materials within the context of future electrically pumped lasers. Synth. Met. 115, 57–62 (2000).

    Article  Google Scholar 

  7. Baldo, M. A., Holmes, R. J. & Forrest, S. R. Prospects for electrically pumped organic lasers. Phys. Rev. B 66, 35321 (2002).

    Article  Google Scholar 

  8. Verlaak, S., Cheyns, D., Debucquoy, M., Arkhipov, V. & Heremans, P. Numerical simulation of tetracene light-emitting transistors: A detailed balance of exciton processes. Appl. Phys. Lett. 85, 2405–2407 (2004).

    Article  Google Scholar 

  9. Meijer, E. J. et al. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2, 678–682 (2003).

    Article  Google Scholar 

  10. Anthopoulos, T. D. et al. Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors. Appl. Phys. Lett. 85, 4205–4207 (2004).

    Article  Google Scholar 

  11. Dodabalapur, A., Katz, H. E. & Torsi, L. Molecular orbital energy level engineering in organic transistors. Adv. Mater. 8, 853–855 (1996).

    Article  Google Scholar 

  12. Rost, C. et al. Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85, 1613–1615 (2004).

    Article  Google Scholar 

  13. Tada, H., Touda, H., Takada, M. & Matsushige, K. Quasi-intrinsic semiconducting state of titanyl-phthalocyanine films obtained under ultrahigh vacuum conditions. Appl. Phys. Lett. 76, 873–875 (2000).

    Article  Google Scholar 

  14. Ahles, M., Hepp, A., Schmechel, R. & von Seggern, H. Light emission from a polymer transistor. Appl. Phys. Lett. 84, 428–430 (2004).

    Article  Google Scholar 

  15. Santato, C. et al. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synth. Met. 146, 329–334 (2004).

    Article  Google Scholar 

  16. Sakanoue, T., Fujiwara, E., Yamada, R. & Tada, H. Visible light emission from polymer-based field-effect transistors. Appl. Phys. Lett. 84, 3037–3039 (2004).

    Article  Google Scholar 

  17. Reynaert, J. et al. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005).

    Article  Google Scholar 

  18. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    Article  Google Scholar 

  19. Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett. 93, 076803 (2004).

    Article  Google Scholar 

  20. Chua, L. L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  Google Scholar 

  21. Ho, P. K. H. et al. Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404, 481–484 (2000).

    Article  Google Scholar 

  22. Kim, J. S., Ho, P. K. H., Greenham, N. C. & Friend, R. H. Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations. J. Appl. Phys. 88, 1073–1081 (2000).

    Article  Google Scholar 

  23. Sze, S. M. Semiconductor Devices—Physics and Technology (Wiley, New York, 2002).

    Google Scholar 

  24. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  Google Scholar 

  25. Rost, C., Gundlach, D. J., Karg, S. & Riess, W. Ambipolar organic field-effect transistor based on an organic heterostructure. J. Appl. Phys. 95, 5782–5787 (2004).

    Article  Google Scholar 

  26. Roichman, Y. & Tessler, N. Structures of polymer field-effect transistor: Experimental and numerical analyses. Appl. Phys. Lett. 80, 151–153 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Richards, R. Shikler and J. S. Kim for technical help and useful discussions. J.Z. thanks the Gates Cambridge Trust and EPSRC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Sirringhaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information S1, figures S1 and S2 and movie legends (PDF 408 kb)

Supplementary movie S2

Supplementary movie S2 (AVI 2262 kb)

Supplementary movie S3

Supplementary movie S3 (AVI 1918 kb)

Supplementary movie S4

Supplementary movie S4 (AVI 1919 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaumseil, J., Friend, R. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Mater 5, 69–74 (2006). https://doi.org/10.1038/nmat1537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing