Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fabrication of reconfigurable protein matrices by cracking

Abstract

The interface between extracellular matrices and cells is a dynamic environment that is crucial for regulating important cellular processes such as signal transduction, growth, differentiation, motility and apoptosis1. In vitro cellular studies and the development of new biomaterials would benefit from matrices that allow reversible modulation of the cell adhesive signals at a scale that is commensurate with individual adhesion complexes. Here, we describe the fabrication of substrates containing arrays of cracks in which cell-adhesive proteins are selectively adsorbed. The widths of the cracks (120–3,200 nm) are similar in size to individual adhesion complexes (typically 500–3,000 nm)2 and can be modulated by adjusting the mechanical strain applied to the substrate. Morphology of cells can be reversibly manipulated multiple times through in situ adjustment of crack widths and hence the amount of the cell-adhesive proteins accessible to the cell. These substrates provide a new tool for assessing cellular responses associated with exposure to matrix proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of crack patterning.
Figure 2: Analysis of cracks.
Figure 3: Cyclic switching of cells between modes of spreading and retraction.

Similar content being viewed by others

References

  1. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  2. Cukierman, E., Pankov, R., Stevens, D. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    CAS  Google Scholar 

  3. Dike, L. E. et al. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell. Dev. An. 35, 441–448 (1999).

    Article  CAS  Google Scholar 

  4. Maheshwari, G., Brown, G., Lauffenburger, D. A., Wells, A. & Griffity, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci. 113, 1677–1686 (2000).

    CAS  Google Scholar 

  5. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chem. Phys. Chem. 5, 383–388 (2004).

    Article  CAS  Google Scholar 

  6. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    Article  CAS  Google Scholar 

  7. Smilenov, L. B., Mikhailov, A., Pelham, R. J. Jr, Marcantonio, E. E. & Gundersen, G. G. Focal adhesion motility revealed in stationary fibroblasts. Science 286, 1172–1174 (1999).

    Article  CAS  Google Scholar 

  8. Okano, T., Yamata, N., Sakai, J. & Sakurai, Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16, 297–303 (1995).

    Article  CAS  Google Scholar 

  9. Elbert, D. L. & Hubbell, J. A. Conjugate Addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2, 430–441 (2001).

    Article  CAS  Google Scholar 

  10. Schutt, M. et al. Photocontrol of cell adhesion processes: model studies with cyclic azobenzene-RGD peptides. Chem. Biol. 10, 487–490 (2003).

    Article  CAS  Google Scholar 

  11. Yeo, W.-S., Yousaf, M. N. & Mrksich, M. Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 125, 14994–14995 (2003).

    Article  CAS  Google Scholar 

  12. Jiang, X. Y., Ferrigno, R., Mrksich, M. & Whitesides, G. M. Electrochemical desorption of self-assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 125, 2366–2367 (2003).

    Article  CAS  Google Scholar 

  13. Bowden, N., Huck, W. T. S., Paul, K. E. & Whitesides, G. M. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl. Phys. Lett. 75, 2557–2559 (1999).

    Article  CAS  Google Scholar 

  14. Ruardij, T. G., van den Boogaart, M. A. F. & Rutten, W. L. C. Adhesion and growth of electrically active cortical neurons on polyethylenimine patterns microprinted onto PEO-PPO-PEO triblockcopolymer-coated hydrophobics surfaces. IEEE Trans. Nanobiosci. 1, 4–11 (2002).

    Article  Google Scholar 

  15. Nelson, C. M., Raghavan, S., Tan, J. L. & Chen, C. S. Degradation of micropatterned surfaces by cell-dependent and -independent processes. Langmuir 19, 1493–1499 (2003).

    Article  CAS  Google Scholar 

  16. Thouless, M. D. Crack spacing in brittle films on elastic substrates. J. Am. Ceram. Soc. 73, 2144–2146 (1990).

    Article  Google Scholar 

  17. Thouless, M. D., Olsson, E. & Gupta, A. Cracking of brittle films on an elastic substrate. Acta Metall. Mater. 40, 1287–1292 (1992).

    Article  CAS  Google Scholar 

  18. Hutchinson, J. W. & Suo, Z. Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 64–187 (1992).

    Google Scholar 

  19. Beuth, J. L. Cracking of thin bonded films in residual tension. Int. J. Solid Struct. 29, 1657–1675 (1992).

    Article  Google Scholar 

  20. Huang, R., Prevost, J. H., Huang, Z. Y. & Suo, Z. Channel-cracking of thin films with the extended finite-element method. Eng. Fract. Mech. 70, 2513–2526 (2003).

    Article  Google Scholar 

  21. Shenoy, V. B., Schwartzman, A. F. & Freund, L. B. Crack patterns in brittle thin films. Int. J. Fract. 103, 1–17 (2000).

    Article  CAS  Google Scholar 

  22. Clark, P., Dunn, G. A., Knibbs, A. & Peckham, M. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int. J. Biochem. Cell Biol. 34, 816–825 (2002).

    Article  CAS  Google Scholar 

  23. Berendse, M., Grounds, M. D. & Lloyd, C. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly. Exp. Cell Res. 291, 435–450 (2003).

    Article  CAS  Google Scholar 

  24. Clarkson, E. D., Edwards-Prasad, J., Freed, C. R. & Prasad, K. N. Immortalized dopamine neurons: a model to study neurotoxicity and neuroprotection. Proc. Soc. Exp. Biol. Med. 222, 157–163 (1999).

    Article  CAS  Google Scholar 

  25. Easter, S. S., Purves, D., Rakie, P. & Spitzer, N. C. The changing view of neural specificity. Science 230, 507–511 (1985).

    Article  Google Scholar 

  26. Geissler, M. & Xia, Y. N. Patterning: Principles and some new developments. Adv. Mater. 16, 1249–1269 (2004).

    Article  CAS  Google Scholar 

  27. Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    Article  CAS  Google Scholar 

  28. Mrksich, M. What can surface chemistry do for cell biology? Curr. Opin. Chem. Biol. 6, 794–797 (2002).

    Article  CAS  Google Scholar 

  29. Geho, D. H., Lahar, N., Ferrari, M., Petricoin, E. F. & Liotta, L. A. Opportunities for nanotechnology-based innovation in tissue proteomics. Biomed. Microdevices 6, 231–239 (2004).

    Article  CAS  Google Scholar 

  30. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. F. Mansfield and C. Wauchope for AFM assistance, S.-H. Chiang for the C2C12 cells, C. Chen for helpful discussions, D. P. Brereton for reviewing the article, BASF Corporation for kindly providing the PLURONIC F108 surfactant, and NIH (EB003793-01, PO1 AG20591), NSF (BES-0238625; DMI-0403603; CTS-0116331) and the NASA BioScience and Engineering Institute (NNC04AA21A) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Takayama.

Ethics declarations

Competing interests

K.N. is co-founder of Strex. The other authors have no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures 1, 2, 3, 4 and 5 (PDF 605 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Mills, K., Peters, P. et al. Fabrication of reconfigurable protein matrices by cracking. Nature Mater 4, 403–406 (2005). https://doi.org/10.1038/nmat1365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing