Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale ferroelectric field-effect writing and reading using scanning tunnelling spectroscopy

Abstract

Control of the density of mobile charge carriers using electric fields is widely used in a variety of metal–insulator–semiconductor structures and is the governing principle behind the operation of field-effect transistors. Ferroelectric materials possessing a switchable and non-volatile polarization field can be used as insulating layers, revealing new opportunities for device applications1,2. Advances in material processing and in particular complex oxide thin-film growth mean that high-quality field-effect devices can be based on ferroelectric/metallic oxide heterostructures3,4,5,6,7,8,9,10,11. In addition, advances in local probe techniques such as atomic force microscopy allow them to be used in the imaging and study of small ferroelectric domain structures in bulk crystals12 and thin films13,14,15,16,17,18,19,20. Meanwhile, scanning tunnelling microscopy and spectroscopy have established themselves as powerful techniques for atomic manipulation and nanometre-resolution electron tunnelling spectroscopy21,22. Here, a scanning tunnelling microscope is used to investigate the ferroelectric field effect in all-perovskite heterostructures. Scanning tunnelling spectroscopy allows us to probe the local electronic properties of the polarized channel of a ferroelectric field-effect device as a function of the field orientation. This technique can be used to read and write ferroelectric field-induced regions with a size as low as 20 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SRTO/PZT/NSTO ferroelectric field-effect device.
Figure 2: STS characteristics of the SRTO channel showing semiconducting and ohmic behaviours as a function of the ferroelectric polarization state.
Figure 3: Ferroelectric domain writing/imaging/erasing.
Figure 4: Nanoscale ferroelectric domains.

Similar content being viewed by others

References

  1. Scott, J. F. & Paz de Araujo, C. A. Ferroelectric memories. Science 246, 1400–1405 (1989).

    Article  CAS  Google Scholar 

  2. Auciello, O., Scott, J. F. & Ramesh, R. The physics of ferroelectric memories. Phys. Today 51, 22–27 (1998).

    Article  CAS  Google Scholar 

  3. Watanabe, Y. Epitaxial all-perovskite ferroelectric field effect transistor with a memory retention. Appl. Phys. Lett. 66, 1770–1772 (1995).

    Article  CAS  Google Scholar 

  4. Ahn, C. H. et al. Ferroelectric field effect in epitaxial thin film oxide SrCuO2/Pb(Zr0.52Ti0.58)O3 heterostructures. Science 269, 373–376 (1995).

    Article  CAS  Google Scholar 

  5. Mathews, S., Ramesh, R., Venkatesan, T. & Benedetto, J. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276, 238–240 (1997).

    Article  CAS  Google Scholar 

  6. Ahn, C. H., Triscone, J.-M. & Mannhart, J. Electric field effect on correlated oxide systems. Nature 424, 1015–1018 (2003).

    Article  CAS  Google Scholar 

  7. Schrott, A. G., Misewich, J. A., Nagarajan, V. & Ramesh, R. Ferroelectric field-effect transistor with a SrRuxTi1−xO3 channel. Appl. Phys. Lett. 82, 4770–4772 (2003).

    Article  CAS  Google Scholar 

  8. Wu, T. et al. Electroresistance and electronic phase separation in mixed-valent manganites. Phys. Rev. Lett. 86, 5998–6001 (2001).

    Article  CAS  Google Scholar 

  9. Hong, X., Posadas, A., Lin, A. & Ahn, C. H. Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1−xSrxMnO3 . Phys. Rev. B 68, 134415 (2003).

    Article  Google Scholar 

  10. Kanki, T., Park, Y.-G., Tanaka, H. & Kawai, T. Electrical-field control of metal-insulator transition at room temperature in Pb(Zr0.2Ti0.8)O3/La1-xBaxMnO3 field-effect transistor. Appl. Phys. Lett. 83, 4860–4862 (2003).

    Article  CAS  Google Scholar 

  11. Zhao, T. et al. Colossal magnetoresitive manganite-based ferroelectric field-effect transistor on Si. Appl. Phys. Lett. 84, 750–752 (2004).

    Article  CAS  Google Scholar 

  12. Eng, L. M., Friedrich, M., Fousek, J. & Günter, P. Deconvolution of topographic and ferroelectric contrast by noncontact and friction mode microscopy. J. Vac. Sci. Technol B 14, 1191–1196 (1996).

    Article  CAS  Google Scholar 

  13. Güthner, P. & Dransfeld, K. Local poling of ferroelectic polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137–1139 (1992).

    Article  Google Scholar 

  14. Gruverman, A., Auciello, O., Hatano, J. & Tokumoto, H. Scanning force microscopy as a tool for nanoscale study of ferroelectric domains. Ferroelectrics 184, 11–20 (1996).

    Article  CAS  Google Scholar 

  15. Hidaka, T. et al. Formation and observation of 50 nm polarized domains in PbZr1−xTixO3 thin film using scanning probe microscope. Appl. Phys. Lett. 68, 2358–2359 (1996).

    Article  CAS  Google Scholar 

  16. Tybell, T., Ahn, C. H. & Triscone, J.-M. Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856–858 (1999).

    Article  CAS  Google Scholar 

  17. Paruch, P., Tybell, T. & Triscone, J.-M. Nanoscale control of ferroelectric polarization and domain size in epitaxial PZT thin films. Appl. Phys. Lett. 79, 530–532 (2001).

    Article  CAS  Google Scholar 

  18. Ahn, C., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).

    Article  CAS  Google Scholar 

  19. Cho, Y. et al. Tbit/inch2 ferroelectric data storage based on scanning non-linear dielectric microscopy. Appl. Phys. Lett. 81, 4401–4403 (2002).

    Article  CAS  Google Scholar 

  20. Ahn, C. H. et al. Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures. Science 276, 1100–1103 (1997).

    Article  CAS  Google Scholar 

  21. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  22. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  CAS  Google Scholar 

  23. Eom, C. B. et al. Fabrication and properties of epitaxial ferroelectric heterostructures with SrRuO3 isotropic metallic electrodes. Appl. Phys. Lett. 63, 2570–2572 (1993).

    Article  CAS  Google Scholar 

  24. Kuffer, O., Maggio-Aprile, I., Renner, C., Triscone, J.-M. & Fischer, Ø. Piezoelectric response of epitaxial Pb(Zr0.2Ti0.8)O3 films measured by scanning tunneling microscopy. Appl. Phys. Lett. 77, 1701–1703 (2000).

    Article  CAS  Google Scholar 

  25. Gupta, A., Hussey, B. W. & Shaw, T. M. Epitaxial growth of thin films of SrTi1−xRuxO3−δ by pulsed laser deposition. Mater. Res. Soc. Bull. 31, 1463–1470 (1996).

    Article  CAS  Google Scholar 

  26. Kuffer, O. & Fischer, Ø. Low temperature growth of pseudocubic perovskites by rf magnetron sputtering for the realization of epitaxial ferroelectric-based heterostructures. J. Appl. Phys. 97, 0141031 (2005).

    Article  Google Scholar 

  27. Watanabe, Y., Okano, M. & Masuda, A. Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys. Rev. Lett. 86, 332–335 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ch. Renner, J.-M. Triscone, T. Tybell and M. R. Eskildsen for valuable discussions, and A. P. Petrovic for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation and through the National Centre of Competence in Research 'Materials with Novel Electronic Properties—MaNEP'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Kuffer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuffer, O., Maggio-Aprile, I. & Fischer, Ø. Nanoscale ferroelectric field-effect writing and reading using scanning tunnelling spectroscopy. Nature Mater 4, 378–382 (2005). https://doi.org/10.1038/nmat1364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing