Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle networks reduce the flammability of polymer nanocomposites

Abstract

Synthetic polymeric materials are rapidly replacing more traditional inorganic materials, such as metals, and natural polymeric materials, such as wood. As these synthetic materials are flammable, they require modifications to decrease their flammability through the addition of flame-retardant compounds. Environmental regulation has restricted the use of some halogenated flame-retardant additives, initiating a search for alternative flame-retardant additives. Nanoparticle fillers are highly attractive for this purpose, because they can simultaneously improve both the physical and flammability properties of the polymer nanocomposite. We show that carbon nanotubes can surpass nanoclays as effective flame-retardant additives if they form a jammed network structure in the polymer matrix, such that the material as a whole behaves rheologically like a gel. We find this kind of network formation for a variety of highly extended carbon-based nanoparticles: single- and multiwalled nanotubes, as well as carbon nanofibres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected sequences of sample behaviour during gasification and the collected residues.
Figure 2: Effects of the nanoparticle type on mass loss rate.
Figure 3: Effects of the nanoparticle type and concentration on the viscoelastic measurements.
Figure 4: Effects of the nanoparticle type and concentration on mass loss rate and the configuration of the residues.
Figure 5: Relationships between normalized peak mass loss rate and normalized concentration of nanoparticles.
Figure 6: Effects of Mw of PMMA on mass loss rate.

Similar content being viewed by others

References

  1. Kashiwagi, T. Polymer combustion and flammability — Role of the condensed phase. Proc. Combust. Inst. 28, 1423–1437 (1994).

    Article  Google Scholar 

  2. Clift, R., Grace, J. R. & Weber, M. E. Bubbles, Drops, and Particles (Academic, New York, 1978).

    Google Scholar 

  3. Kojima, Y. et al. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 8, 1185–1189 (1993).

    Article  Google Scholar 

  4. Giannelis, E. P. Polymer layered silicate nanocomposites. Adv. Mater. 8, 29–35 (1996).

    Article  Google Scholar 

  5. Wang, Z. & Pinnavaia, T. J. Hybrid organic-inorganic nanocomposites: Exfoliation of magadiite nanolayers in an elastomeric epoxy polymer. Chem. Mater. 10, 1820–1826 (1998).

    Article  Google Scholar 

  6. Kashiwagi, T. et al. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. J. Appl. Polym. Sci. 89, 2072–2078 (2003).

    Article  Google Scholar 

  7. Gilman, J. W. & Kashiwagi, T. Nanocomposites: A revolutionary new flame retardant approach. SAMPE J. 33, 40–46 (1997).

    Google Scholar 

  8. Gilman, J. W. et al. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem. Mater. 12, 1866–1873 (2000).

    Article  Google Scholar 

  9. Zhu, J., Morgan, A. B., Lamelas, F. J. & Wilkie, C. A. Fire properties of polystyrene-clay nanocomposites. Chem. Mater. 13, 3774–3780 (2001).

    Article  Google Scholar 

  10. Zanetti, M., Kashiwagi, T., Falqui, L. & Camino, G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem. Mater. 14, 881–887 (2002).

    Article  Google Scholar 

  11. Gilman, J. W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999).

    Article  Google Scholar 

  12. Porter, D., Metcalfe, E. & Thomas, M. J. K. Nanocomposite fire retardants — A review. Fire Mater. 24, 45–52 (2000).

    Article  Google Scholar 

  13. Wilkie, C. A. in Fire Retardancy of Polymers (eds Le Bras, M., Wilkie, C. A. & Bourgiot, S.) Ch. 1 (Royal Society of Chemistry, Cambridge, 2005).

    Book  Google Scholar 

  14. Kashiwagi, T. in Fire Retardancy of Polymers (eds Le Bras, M., Wilkie, C. A. & Bourgiot, S.) Ch. 6 (Royal Society of Chemistry, Cambridge, 2005).

    Google Scholar 

  15. Kashiwagi, T. et al. Flame retardant mechanism of polyamid 6-clay nanocomposites. Polymer 45, 881–891 (2004).

    Article  Google Scholar 

  16. Ajayan, P. M., Schadler, L. S., Giannaris, C. & Rubio, A. Single-walled carbon nanotube-polymer composites: strength and weakness. Adv. Mater. 12, 750–753 (2000).

    Article  Google Scholar 

  17. Park, C. et al. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364, 303–308 (2002).

    Article  Google Scholar 

  18. Chauvet, O., Benoit, J. M. & Corraze, B. Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 42, 949–952 (2004).

    Article  Google Scholar 

  19. Chang, T. E. et al. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposites. Polymer 46, 439–444 (2005).

    Article  Google Scholar 

  20. Stephan, C. et al. Raman spectroscopy and conductivity measurements on polymer-multi-walled carbon nanotubes composites. J. Mater. Res. 17, 396–400 (2002).

    Article  Google Scholar 

  21. Barrau, S., Demont, P., Peigney, A., Laurent, C. & Lacabanne, C. DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 36, 5187–5194 (2003).

    Article  Google Scholar 

  22. Ruan, S. L., Gao, P., Yang, X. G. & Yu, T. X. Toughning high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44, 5643–5654 (2003).

    Article  Google Scholar 

  23. Meincke, O. et al. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45, 739–748 (2004).

    Article  Google Scholar 

  24. Kharchenko, S. B., Douglas, J. F., Obrzut, J., Grulke, E. A. & Milger, K. B. Flow-induced properties of nanotube-filled polymer materials. Nature Mater. 3, 564–568 (2004).

    Article  Google Scholar 

  25. Lozano, K., Yang, S. & Zeng, Q. Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 93, 155–162 (2004).

    Article  Google Scholar 

  26. Zeng, J., Saltysiak, B., Johnson, W. S., Schiraldi, D. A. & Kumar, S. Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Composites B 35, 173–178 (2003).

    Article  Google Scholar 

  27. Xu, Y., Higgins, B. & Brittain, W. J. Bottom-up synthesis of PS-CNF nanocomposites. Polymer 46, 799–810 (2005).

    Article  Google Scholar 

  28. Gauthier, C., Chazeau, L., Prasse, T. & Cavaille, J. Y. Reinforcement effects of vapor grown carbon nanofibers as fillers in rubbery matrixes. Compos. Sci. Technol. 65, 335–343 (2005).

    Article  Google Scholar 

  29. Peeterbroeck, S. et al. Polymer-layered silicate-carbon nanotube nanocomposites: unique nanofiller synergistic effect. Compos. Sci. Technol. 64, 2317–2323 (2004).

    Article  Google Scholar 

  30. Beyer, G. Filler blend of carbon nanotubes and organoclays with improved char as a new flame retardant system for polymers and cable applications. Fire Mater. 29, 61–69 (2005).

    Article  Google Scholar 

  31. Kashiwagi, T. et al. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23, 761–765 (2002).

    Article  Google Scholar 

  32. Kashiwagi, T. et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45, 4227–4239 (2004).

    Article  Google Scholar 

  33. Kashiwagi, T. et al. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer 46, 471–481 (2005).

    Article  Google Scholar 

  34. Schartel, B., Pötschke, P., Knoll, U. & Abdel-Goad, M. Fire behavior of polyamide 6/multiwall carbon nanotube nanocomposites. Eur. Polym. J. 41, 1061–1070 (2005).

    Article  Google Scholar 

  35. Du, F. et al. Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37, 9048–9055 (2004).

    Article  Google Scholar 

  36. Bicerano, J., Douglas, J. F. & Brune, D. A. Model for the viscosity of particle dispersions. J.M.S.-Rev. Macromol. Chem. Phys. C 39, 561–642 (1999).

    Article  Google Scholar 

  37. Hough, L. A., Islam, M. F., Janmey, P. A. & Yodh, A. G. Viscosity of single wall carbon nanotube suspensions. Phys. Rev. Lett. 93, 168102 (2004).

    Article  Google Scholar 

  38. Pötschke, P., Fornes, T. D. & Paul, D. R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43, 3247–3255 (2002).

    Article  Google Scholar 

  39. Lazano, K., Yang, S. & Zeng, Q. Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. J. Appl. Polym. Sci. 93, 155–162 (2004).

    Article  Google Scholar 

  40. Yurekel, K. et al. Structure and dynamics of carbon black-filled elastomers. J. Polym. Sci. B 39, 256–275 (2001).

    Article  Google Scholar 

  41. Austin, P. J., Buch, R. R. & Kashiwagi, T. Gasification of silicone fluids under external thermal radiation Part 1. Gasification rate and global heat of gasification. Fire Mater. 22, 221–237 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Kharchenko of Masco Corporation for valuable discussion and Carbon Nanotechnologies Incorporated, Foster Miller Company for providing SWNTs and Sid Richardson Carbon Company for providing CBPs. T.K. acknowledges funding from NIST by 5D1022 and F.D. and K.I.W. acknowledge funding from the Office of Naval Research by ONR Grant N00014-03-1-0890. This is a publication of the National Institute of Standards and Technology (NIST), an agency of the US Government, and by statute is not subject to copyright in the United States.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takashi Kashiwagi or Jack F. Douglas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures 7, 8 and 9 (PDF 522 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiwagi, T., Du, F., Douglas, J. et al. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Mater 4, 928–933 (2005). https://doi.org/10.1038/nmat1502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing