Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding foods as soft materials

Abstract

Foods make up some of the most complex examples of soft condensed matter (SCM) with which we interact daily. Their complexity arises from several factors: the intricacy of components, the different aggregation states in which foods are encountered, and the multitude of relevant characteristic time and length scales. Because foodstuffs are governed by the rules of SCM physics but with all the complications related to real systems, the experimental and theoretical approaches of SCM physics have deepened our comprehension of their nature and behaviour, but many questions remain. In this review we discuss the current understanding of food science, by considering established SCM methods as well as emerging techniques and theoretical approaches. With their complexity, heterogeneity and multitude of states, foods provide SCM physics with a challenge of remarkable importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic state diagram of colloidal particles with short-range potentials.
Figure 2: The sol–gel transition, from model systems to yoghurt and ceramics.
Figure 3: Gel network structure obtained by SEM (a, b) and TEM (c, d) of gels fermented with Streptococcus thermophylus under different conditions.
Figure 4: Time-lapse sequence (extracted from a video) illustrating Ostwald ripening.
Figure 5: Three-dimensional reconstruction of foam interface consisting of biopolymers using confocal microscopy.
Figure 6: Cryotransmission electron micrographs of some liquid crystalline phases encountered in foods, re-dispersed in water.
Figure 7: Phase diagram of a food system based on water and an industrial grade of monolinolein.
Figure 8: Range of applicability of classical DLS, 3D-DLS and DWS.

Similar content being viewed by others

References

  1. Donald, A. Food for thought. Nature Mater. 3, 579–581 (2004).

    CAS  Google Scholar 

  2. Barnes, P., Finney, J. L., Nicholas, J. D. & Quinn, J. E. Cooperative effects in simulated water. Nature 282, 459–464 (1979).

    CAS  Google Scholar 

  3. Matsyama, A. & Tanaka, F. Theory of solvation-induced reentrant phase-separation in polymer-solutions. Phys. Rev. Lett. 65, 341–344 (1990).

    Google Scholar 

  4. Pusey, P. N. in Liquids, Freezing and the Glass Transition (eds Hansen, J. P., Levesque, D. & Zinn-Justin, J.) 763 (North-Holland, Amsterdam, 1991).

    Google Scholar 

  5. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    CAS  Google Scholar 

  6. Frenkel, D. Playing tricks with designer 'atoms'. Science 296, 65–66 (2002).

    CAS  Google Scholar 

  7. Dawson, K. A. The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Curr. Opin. Colloid Interface Sci. 7, 218–227 (2002).

    CAS  Google Scholar 

  8. Pham, K. N. et al. Multiple glassy states in a simple model system. Science 296, 104–106 (2002).

    CAS  Google Scholar 

  9. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    CAS  Google Scholar 

  10. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    CAS  Google Scholar 

  11. Trappe, V. & Sandkühler, P. Colloidal gels—low-density disordered solid-like states. Curr. Opin. Colloid Interface Sci. 8, 494–500 (2004).

    CAS  Google Scholar 

  12. Schurtenberger, P., Stradner, A., Romer, S., Urban, C. & Scheffold, F. Aggregation and gel formation in biopolymer solutions. Chimia 55, 155–159 (2001).

    CAS  Google Scholar 

  13. Pusey, P. N. & van Megen, W. Phase-behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986).

    CAS  Google Scholar 

  14. Sciortino, F. One liquid, two glasses. Nature Mater. 1, 145–146 (2002).

    CAS  Google Scholar 

  15. Tuinier, R., Rieger, J. & de Kruif, C. G. Depletion-induced phase separation in colloid-polymer mixtures. Adv. Colloid Interface Sci. 103, 1–31 (2003).

    CAS  Google Scholar 

  16. Lin, M. Y. et al. Universality in colloid aggregation. Nature 339, 360–362 (1989).

    CAS  Google Scholar 

  17. Schurtenberger, P. et al. in Mesoscale Phenomena in Fluid Systems, ACS Symp. Series 861 (eds Case, F. & Alexandridis, P.) 143–160 (2003).

    Google Scholar 

  18. Tanaka, T. Viscoelastic phase separation. J. Phys. Condens. Matter 12, R207–R264 (2000).

    CAS  Google Scholar 

  19. de Kruif, C. G. & Zhulina, E. B. κ-casein as a polyelectrolyte brush on the surface of casein micelles. Colloids Surf. A 117, 151–159 (1996).

    CAS  Google Scholar 

  20. de Kruif, C. G. Casein micelles: diffusivity as a function of renneting time. Langmuir 8, 2932–2937 (1992).

    CAS  Google Scholar 

  21. de Kruif, C. G. & May, R. P. κ-casein micelles: structure, interactions and gelling studied by small-angle neutron scattering. Eur. J. Biochem. 200, 431–436 (1991).

    CAS  Google Scholar 

  22. Alexander, M., Rojas-Ochoa, L. F., Leser, M. & Schurtenberger, P. Structure, dynamics and optical properties of concentrated milk suspensions: an analogy to hard sphere liquids. J. Colloid Interface Sci. 253, 35–46 (2002).

    CAS  Google Scholar 

  23. Dahbi, L., Alexander, M., Trappe, V. & Schurtenberger, P. Rheological and structural properties of casein suspensions: an analogy with microgels. Langmuir (in the press).

  24. Meeker, S. P., Poon, W. C. K. & Pusey, P. N. Concentration dependence of the low-shear viscosity of suspensions of hard-sphere colloids. Phys. Rev. E, 55, 5718–5722 (1997).

    CAS  Google Scholar 

  25. Senff, H. & Richtering, W. Temperature sensitive microgel suspensions: colloidal phase behaviour and rheology of soft spheres. J. Chem. Phys. 111, 1705–1711 (1999).

    CAS  Google Scholar 

  26. Fuchs, M. & Schweizer, K. S. Structure of colloid-polymer suspensions. J. Phys. Condens. Matter 14, R239–R269 (2002).

    CAS  Google Scholar 

  27. Bhat, S. K. & Schurtenberger, P. Viscoelastic phase separation in biopolymer mixtures—from model systems to tailored food materials. Soft Matter (in the press).

  28. Brinker, C. J. & Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic, San Diego, 1990).

    Google Scholar 

  29. Dickinson, E. Structure and rheology of simulated gels formed from aggregated colloidal particles. J. Colloid Interface Sci. 225, 2–15 (2000).

    CAS  Google Scholar 

  30. Dickinson, E. in Food Colloids. Proteins, Lipids and Polysaccharides (eds Dickinson, E. & Bergenstahl, B.) 107–126 (Royal Society of Chemistry, Cambridge, 1997).

    Google Scholar 

  31. Dickinson, E. in Food Colloids, Biopolymers and Materials (eds Dickinson, E. & van Vliet, T.) 68–83 (Royal Society of Chemistry, Cambridge, 2003).

    Google Scholar 

  32. Krall, A. & Weitz, D. A. Internal dynamics and elasticity of fractal colloidal gels. Phys. Rev. Lett. 80, 778–781 (1998).

    CAS  Google Scholar 

  33. Romer, S., Scheffold, F. & Schurtenberger, P. The sol-gel transition of concentrated colloidal suspensions. Phys. Rev. Lett. 85, 4980–4983 (2000).

    CAS  Google Scholar 

  34. Wyss, H., Romer, S., Scheffold, F., Schurtenberger, P. & Gauckler, L. J. Diffusing wave spectroscopy of concentrated alumina suspensions during gelation. J. Colloid Interface Sci. 241, 89–97 (2001).

    CAS  Google Scholar 

  35. Wyss, H. Microstructure and Mechanical Behavior of Concentrated Particle Gels Thesis, ETH Zürich (2003).

    Google Scholar 

  36. De Gennes, P.-G. Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).

    Google Scholar 

  37. Scheffold, F. & Schurtenberger, P. Light scattering probes of viscoelastic fluids and solids. Soft Mater. 1, 139–165 (2003).

    Google Scholar 

  38. Heinemann, C. et al. Tracer microrheology of gamma-dodecalactone induced gelation of aqueous starch systems. Carbohydrate Polym. 55, 155–161 (2004).

    CAS  Google Scholar 

  39. Diez Orrite, S., Stoll, S. & Schurtenberger, P. Off-lattice Monte Carlo simulations of irreversible and reversible aggregation processes. Soft Matter (in the press).

  40. Anema, S. G., Lee, S. K., Lowe, E. K. & Klostermeyer, H. Rheological properties of acid gels prepared from heated pH-adjusted skim milk. J. Agric. Food Chem. 52, 337–343 (2004).

    CAS  Google Scholar 

  41. Lucey, J. A., Tamehana, M., Singh, H. & Munro, P. A. Effect of interactions between denatured whey proteins and casein micelles on the formation and rheological properties of acid skim milk gels. J. Dairy Res. 65, 555–567 (1998).

    CAS  Google Scholar 

  42. Roefs, S. P. F. M., de Groot-Mostert, A. E. A. & van Vliet, T. Structure of acid casein gels. 1. Formation and model of gel network. Colloids Surf. 50, 141–159 (1990).

    CAS  Google Scholar 

  43. Schorsch, C., Wilkins, D. K., Jones, M. G. & Norton, I. T. Gelation of casein-whey mixtures: effects of heating whey proteins alone or in the presence of casein micelles. J. Dairy Res. 68, 471–481 (2001).

    CAS  Google Scholar 

  44. Stradner, A., Romer, S., Urban, C. & Schurtenberger, P. Aggregation and gel formation in biopolymer solutions. Progr. Colloid Polym. Sci. 118, 136–140 (2001).

    CAS  Google Scholar 

  45. Dalgleish, D. G., Alexander, M. & Corredig, M. Studies of the acid gelation of milk using ultrasonic spectroscopy and diffusing wave spectroscopy. Food Hydrocolloids 18, 747–755 (2004).

    CAS  Google Scholar 

  46. Horne, D. S. & Davidson, C. M. in Protein and Fat Globule Modifications 199303 (special issue), 267–276 (International Dairy Federation, 1993).

  47. Horne, D. S., Hemar, Y. & Davidson, C. M. in Food Colloids, Biopolymers and Materials (eds Dickinson, E. & van Vliet, T) 17–25 (Royal Society of Chemistry, Cambridge, 2003).

    Google Scholar 

  48. Vasbinder, A. J., Alting, A. C. & de Kruif, C. G. Quantification of heat-induced casein-whey protein interactions in milk and its relation to gelation kinetics. Colloids Surf. B 31, 115–123 (2003).

    CAS  Google Scholar 

  49. Vasbinder, A. J., van de Velde, F. & de Kruif, C. G. Gelation of casein-whey protein mixtures. J. Dairy Sci. 87, 1167–1176 (2004).

    CAS  Google Scholar 

  50. Corredig, M., Alexander, M. & Dalgleish, D. G. The application of ultrasonic spectroscopy to the study of the gelation of milk components. Food Res. Int. 37, 557–565 (2004).

    CAS  Google Scholar 

  51. Kudryashov, E. D., Hunt, N. T., Arikainen, E. O. & Buckin, V. A. Monitoring of acidified milk gel formation by ultrasonic shear wave measurements. High-frequency viscoelastic moduli of milk and acidified milk gel. J. Dairy Sci. 84, 375–388 (2001).

    CAS  Google Scholar 

  52. Kalab, M., Allan-Wojtas, P. & Phipps-Todd, B. E. Development of microstructure in set-style nonfat yoghurt—a review. Food Microstruct. 2, 51–66, (1983).

    Google Scholar 

  53. Lucey, J. A., Teo, C. T., Munro, P. A. & Singh, H. Microstructure, permeability and appearance of acid gels made from heated skim milk. Food Hydrocolloids 12, 159–165 (1998).

    CAS  Google Scholar 

  54. Davies, F. L., Shankar, P. A., Brooker, B. E. & Hobbs, D. G. A heat-induced change in the ultrastructure of milk and its effect on gel formation in yoghurt. J. Dairy Res. 45, 53–58 (1978).

    CAS  Google Scholar 

  55. Heertje, I., Visser, J. & Smits, P. Structure formation in acid milk gels. Food Microstruct. 4, 267–277 (1985).

    CAS  Google Scholar 

  56. Auty, M. A. E., Fenelon, M. A., Guinee, T. P., Mullins, C. & Mulvihill, D. M. Dynamic confocal scanning laser microscopy methods for studying milk protein gelation and cheese melting. Scanning 21, 299–304 (1999).

    CAS  Google Scholar 

  57. Horne, D. S. Formation and structure of acidified milk gels. Int. Dairy J. 9, 261–268 (1999).

    CAS  Google Scholar 

  58. Söderberg, I., Dickinson, E. & Murray, B. S. Coalescence stability of gas bubbles subjected to rapid pressure change at a planar air/water interface. Colloids Surf. B 30, 237–248 (2003).

    Google Scholar 

  59. Terrill, E. J., Melville, W. K. & Stramski, D. Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. 106, 16815–16823 (2001).

    Google Scholar 

  60. Walstra, P. Physical Chemistry of Foods (Marcel-Dekker, New York, 2003).

    Google Scholar 

  61. Finkelstein, A. V. & Ptitsyn, O. B. Protein Physics (Academic, Amsterdam, 2002).

    Google Scholar 

  62. Pereira, L. G. C., Johansson, C., Radke, C. J. & Blanch, H. W. Surface forces and drainage kinetics of protein-stabilized aqueous films. Langmuir 19, 7503–7513 (2003).

    CAS  Google Scholar 

  63. Fruhner, H. & Wantke, H. K. D. A new oscillating bubble technique for measuring surface dilational properties. Colloids Surf. A 114, 53–59 (1996).

    CAS  Google Scholar 

  64. Brooks, C. F., Fuller, G. G., Frank, C. W. & Robertson, C. R. An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir 15, 2450–2459 (1999).

    CAS  Google Scholar 

  65. Miller, R., Fainerman, V. B., Leser, M. E. & Michel, M. Kinetics of adsorption of proteins and surfactants. Curr. Opin. Colloid Interface Sci. 9, 350–356 (2004).

    CAS  Google Scholar 

  66. Binks, B. P. & Lumsdon, S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16, 8622–8631 (2000).

    CAS  Google Scholar 

  67. Pugnaloni, L. A, Dickinson, E., Ettelaie, R., Mackie, A. R. & Wilde, P. J. Competetive adsorption of proteins and low molecular weight surfactants: computer simulation and microscopic imaging. Adv. Colloid Interface Sci. 107, 27–49 (2004).

    CAS  Google Scholar 

  68. Kraynik, A. M. Foam flows. Annu. Rev. Fluid Mech. 20, 325–357 (1988).

    Google Scholar 

  69. Princen, H. M. Rheology of foams and highly concentrated emulsions. 1. Elastic properties and yield stress of a cylindrical model system. J. Colloid Interface Sci. 91, 160–175 (1983).

    CAS  Google Scholar 

  70. Princen, H. M. Rheology of foams and highly concentrated emulsions. 2. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions. J. Colloid Interface Sci. 105, 150–171 (1985).

    CAS  Google Scholar 

  71. Weaire, D. & Hutzler, S. The Physics of Foams (Oxford Univ. Press, Dublin, 2000).

    Google Scholar 

  72. Bolton, F. & Weaire, D. The effects of plateau borders in 2-dimensional soap froth. 2. General simulation and analysis of rigidity loss transition. Phil. Mag. B 65, 473–487 (1992).

    Google Scholar 

  73. Kralchevksy, P. A., Ivanov, I. B., Anathapadmanabhan, K. P. & Lips, A. On the thermodynamics of particle-stabilized emulsions: curvature effects and catastrophic phase inversion. Langmuir 21, 50–63 (2005).

    Google Scholar 

  74. Mackie, A. R. et al. Growth of surfactant domains in protein films. Langmuir 19, 6032–6038 (2003).

    CAS  Google Scholar 

  75. Krog, N. J. in Food Emulsions (eds Friberg, S. E. & Larsson, K.) 141–188 (Marcel Dekker, New York, 1990).

    Google Scholar 

  76. de Campo, L. et al. Reversible phase transitions in emulsified nanostructured lipid systems. Langmuir 20, 5254–5261 (2004).

    CAS  Google Scholar 

  77. Saturni, L., Rustichelli, F., Di Gregorio, G. M., Cordone, L. & Mariani, P. Sugar-induced stabilization of the monoolein Pn3m bicontinuous cubic phase during dehydration. Phys. Rev. E 64, 040902 (2001).

    CAS  Google Scholar 

  78. Mariani, P., Rustichelli, F., Saturni, L. & Cordone, L. Stabilization of the monoolein Pn3m cubic structure on trehalose glasses. Eur. Biophys. J. Biophy. 28, 294–301 (1999).

    CAS  Google Scholar 

  79. Lindstrom, M., Ljusberg-Wahren, H., Larsson, K. & Borgstrom, B. Aqueous lipid phases of relevance to intestinal fat digestion and absorption. Lipids 16, 749–754 (1981).

    CAS  Google Scholar 

  80. Vauthey, S. et al. Structured fluids as microreactors for flavor formation by the Maillard reaction. J. Agric. Food Chem. 48, 4808–4816 (2000).

    CAS  Google Scholar 

  81. Qiu, H. & Caffrey, M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21, 223–234 (2000).

    CAS  Google Scholar 

  82. Mezzenga, R. et al. Shear rheology of lyotropic liquid crystals: a case study. Langmuir 21, 3322–3333 (2005).

    CAS  Google Scholar 

  83. Pitzalis, P. et al. Characterization of the liquid-crystalline phases in the glycerol monooleate/diglycerol monooleate/water system. Langmuir 16, 6358–6365 (2000).

    CAS  Google Scholar 

  84. Hu, H. W. & Granick, S. Viscoelastic dynamics of confined polymers melts. Science 258, 1339–1342 (1992).

    CAS  Google Scholar 

  85. Granick, S. Motions and relaxations of confined liquids. Science 253, 1374–1379 (1991).

    CAS  Google Scholar 

  86. Dhinojwala, A. & Granick, S. Relaxation time of confined aqueous films under shear. J. Am. Chem. Soc. 119, 241–242 (1997).

    CAS  Google Scholar 

  87. Jones, J. L. & McLeish, T. C. B. Concentration fluctuations in surfactant cubic phases: Theory, rheology, and light scattering. Langmuir 15, 7495–7503 (1999).

    CAS  Google Scholar 

  88. Jones, J. L. & McLeish, T. C. B. Rheological response of surfactant cubic phases. Langmuir 11, 785–792 (1995).

    CAS  Google Scholar 

  89. Rodriguez-Abreu, C., Garcia-Roman, M. & Kunieda, H. Rheology and dynamics of micellar cubic phases and related emulsions. Langmuir 20, 5235–5240 (2004).

    CAS  Google Scholar 

  90. Monduzzi, M., Ljusberg-Wahren, H., & Larsson, K. R. A C-13 NMR study of aqueous dispersions of reversed lipid phases. Langmuir 16, 7355–7358 (2000).

    CAS  Google Scholar 

  91. Thies, M. et al. Liquid-like ordered colloidal suspensions of lipid A: the influence of lipid A particle concentration. J. Chem. Phys. 116, 3471–3483 (2002).

    CAS  Google Scholar 

  92. Hamley, I. W. The Physics of Block Copolymers (Oxford Univ. Press, New York, 1998).

    Google Scholar 

  93. Cochran, E. W. & Bates, F. S. Thermodynamic behaviour of poly(cyclohexylethylene) in polyolefin diblock copolymers. Macromolecules 35, 7368–7374 (2002).

    CAS  Google Scholar 

  94. Israelachvili, J. N. Intermolecular and Surfaces Forces 2nd edn (Academic, New York, 1991).

    Google Scholar 

  95. Jonsson, B., Lindman, B., Holmberg, K. & Kronberg, B. Surfactants and Polymers in Aqueous Solutions (Wiley, Chichester, 2001).

    Google Scholar 

  96. Scriven, L. E. Equilibrium bicontinuous structure. Nature 263, 123–125 (1976).

    CAS  Google Scholar 

  97. Schwarz, U. S. & Gompper, G. Bending frustration of lipid-water mesophases based on cubic minimal surfaces. Langmuir 17, 2084–2096 (2001).

    CAS  Google Scholar 

  98. Muller, M. & Schick, M. Calculation of the phase behaviour of lipids. Phys. Rev. E 57, 6973–6978 (1998).

    CAS  Google Scholar 

  99. Li, X. J. & Schick, M. Theory of tunable pH-sensitive vesicles of anionic and cationic lipids or anionic and neutral lipids. Biophys. J. 80, 1703–1711 (2001).

    CAS  Google Scholar 

  100. Flory, P. J. Statistical thermodynamics of semi-flexible chain molecules. Proc. R. Soc. Lond. A 234, 60–73 (1956).

    CAS  Google Scholar 

  101. Bekiranov, S., Bruinsma, R. & Pincus, P. Solution behaviour of polyethylene oxide in water as a function of temperature and pressure. Phys. Rev. E 55, 577–585 (1997).

    CAS  Google Scholar 

  102. Mezzenga, R. & Ubbink, J. Delivery of functionality in complex food systems. Trends Food Sci. Technol. (in the press).

  103. Ikkala, O. & ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

    CAS  Google Scholar 

  104. Antonietti, M., Conrad, J. & Thunemann, A. Polyelectrolyte-surfactant complexes—a new type of solid mesomorphous material. Macromolecules 27, 6007–6011 (1994).

    CAS  Google Scholar 

  105. Link, D. R., Anna, S. L., Weitz, D. A. & Stone, H. A. Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 (2004).

    CAS  Google Scholar 

  106. Phan, S. E. et al. Phase transition, equation of state, and limiting shear viscosities of hard sphere dispersions. Phys. Rev. E 54, 6633–6645 (1996).

    CAS  Google Scholar 

  107. Aichinger, P. A. et al. Fermentation of a skim milk concentrate with Streptococcus thermophilus and chymosin: structure, viscoelasticity and syneresis of gels. Colloids Surf. B 31, 243–255 (2003).

    CAS  Google Scholar 

  108. Yaghmur, A., de Campo, L., Sagalowicz, L., Leser, M. E. & Glatter, O. Emulsified microemulsions and oil-containing liquid crystalline phases. Langmuir 21, 569–577 (2005).

    CAS  Google Scholar 

  109. Sagalowicz, L. et al. Cryotem study of the crystallographic structure and morphology of dispersed monoglyceride self-assembly structures. J. Microsc. (in the press).

  110. Schätzel, K. Suppression of multiple-scattering by photon cross-correlation techniques. J. Mod. Opt. 38, 1849–1865 (1991).

    Google Scholar 

  111. Pusey, P. Suppression of multiple scattering by photon cross-correlation techniques. Curr. Opin. Colloid Interface Sci. 4, 177–185 (1999).

    CAS  Google Scholar 

  112. Urban, C. & Schurtenberger, P. Application of a new light scattering technique to avoid the influence of dilution in light scattering experiments with milk. Phys. Chem. Chem. Phys. 1, 3911–3915 (1999).

    CAS  Google Scholar 

  113. Nicolai, T., Urban, C. & Schurtenberger, P. Light scattering study of turbid heat-set globular protein gels using cross-correlation dynamic light scattering. J. Colloid Interface Sci. 240, 419–424 (2001).

    CAS  Google Scholar 

  114. Weitz, D. A. & Pine, D. J. in Dynamic Light Scattering: The Method and Some Applications (ed. Brown, W.) 653–720 (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  115. Maret, G. Diffusing-wave spectroscopy. Curr. Opin. Colloid Interface Sci. 2, 251–257 (1997).

    CAS  Google Scholar 

  116. Scheffold, F. et al. New trends in optical microrheology of complex fluids and gels. Prog. Colloid Polym. Sci. 123, 141–146 (2004).

    CAS  Google Scholar 

  117. Gisler, T., Weitz, D. A. Tracer microrheology in complex fluids. Curr. Opin. Colloid Interface Sci. 3, 586–592 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Mezzenga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezzenga, R., Schurtenberger, P., Burbidge, A. et al. Understanding foods as soft materials. Nature Mater 4, 729–740 (2005). https://doi.org/10.1038/nmat1496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing