Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles

Abstract

The properties of materials can be created and improved either by confining their dimensions in the nanoscale or by controlling their nanostructure. We have combined these two concepts, and here we describe a new class of nanostructured nanosized materials that show ordered phase-separated domains at an unprecedented molecular length scale. Scanning tunnelling and transmission electron microscope images of monolayer-protected metal nanoparticles, with ligand shells composed of a mixture of molecules, show that the ligands phase-separate into ordered domains as small as 5 Å. Importantly, the domain shape and dimensions can be controlled by varying the ligand composition or the metallic core size. We demonstrate that the formation of ordered domains depends on the curvature of the underlying substrate, and that novel properties result from this nanostructuring. For example, because the size of the domains is much smaller than the typical dimensions of a protein, these materials are extremely effective in avoiding non-specific adsorption of a variety of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MPMNs with phase-separated ordered (rippled) domains on their ligand shell.
Figure 2: Plot of the domain spacing versus the MPA fraction used in the one-step synthesis of gold nanoparticles.
Figure 3: Three-dimensional rendering of STM height images of gold nanoparticles.
Figure 4: The solubility in ethanol of a series of OT/MPA gold nanoparticles as a function of MPA fraction (3.7 nm in diameter).
Figure 5: Schematic drawing of a generic protein (top) and a rippled nanoparticle (bottom).
Figure 6: STM images of mixed OT/MPA monolayers formed on surfaces of varying curvature.

Similar content being viewed by others

References

  1. Templeton, A.C., Wuelfing, M.P. & Murray, R.W. Monolayer protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000).

    Article  CAS  Google Scholar 

  2. Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  3. Daniel, M.C. & Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  4. Thomas, K.G. & Kamat, P.V. Chromophore-functionalized gold nanoparticles. Acc. Chem. Res. 36, 888–898 (2003).

    Article  CAS  Google Scholar 

  5. Xia, Y.N. et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  6. Hu, J.T., Odom, T.W. & Lieber, C.M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999).

    Article  CAS  Google Scholar 

  7. Dai, H.J. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    Article  CAS  Google Scholar 

  8. Empedocles, S.A., Neuhauser, R., Shimizu, K. & Bawendi, M.G. Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243–1256 (1999).

    Article  CAS  Google Scholar 

  9. Schiotz, J., Di Tolla, F.D. & Jacobsen, K.W. Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561–563 (1998).

    Article  Google Scholar 

  10. Bockstaller, M., Kolb, R. & Thomas, E.L. Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783–1786 (2001).

    Article  CAS  Google Scholar 

  11. Lauhon, L.J., Gudiksen, M.S., Wang, C.L. & Lieber, C.M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  CAS  Google Scholar 

  12. Oldenburg, S.J., Hale, G.D., Jackson, J.B. & Halas, N.J. Light scattering from dipole and quadrupole nanoshell antennas. Appl. Phys. Lett. 75, 1063–1065 (1999).

    Article  CAS  Google Scholar 

  13. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  Google Scholar 

  14. Bain, C.D. & Whitesides, G.M. Modeling organic-surfaces with self-assembled monolayers. Angew. Chem. Intl Edn 28, 506–512 (1989).

    Article  Google Scholar 

  15. Yitzchaik, S. & Marks, T.J. Chromophoric self-assembled superlattices. Acc. Chem. Res. 29, 197–202 (1996).

    Article  CAS  Google Scholar 

  16. Stranick, S.J. et al. Nanometer-scale phase separation in mixed composition self-assembled monolayers. Nanotechnology 7, 438–442 (1996).

    Article  CAS  Google Scholar 

  17. Delamarche, E., Michel, B., Biebuyck, H.A. & Gerber, C. Golden interfaces: The surface of self-assembled monolayers. Adv. Mater. 8, 719–724 (1996).

    Article  CAS  Google Scholar 

  18. Folkers, J.P., Laibinis, P.E. & Whitesides, G.M. Self-Assembled monolayers of alkanethiols on gold - comparisons of monolayers containing mixtures of short-chain and long-chain constituents with CH3 and CH2OH terminal groups. Langmuir 8, 1330–1341 (1992).

    Article  CAS  Google Scholar 

  19. Smith, R.K. et al. Phase separation within a binary self-assembled monolayer on Au{111} driven by an amide-containing alkanethiol. J. Phys. Chem. B 105, 1119–1122 (2001).

    Article  CAS  Google Scholar 

  20. Imabayashi, S., Gon, N., Sasaki, T., Hobara, D. & Kakiuchi, T. Effect of nanometer-scale phase separation on wetting of binary self-assembled thiol monolayers on Au(111). Langmuir 14, 2348–2351 (1998).

    Article  CAS  Google Scholar 

  21. Link, S. & El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  CAS  Google Scholar 

  22. Andres, R.P. et al. “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science 272, 1323–1325 (1996).

    Article  CAS  Google Scholar 

  23. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994).

  24. Stellacci, F. et al. Ultrabright supramolecular beacons based on self-assembly of two-photon chromophores on metal nanoparticles. J. Am. Chem. Soc. 125, 328–328 (2003).

    Article  CAS  Google Scholar 

  25. Ingram, R.S., Hostetler, M.J. & Murray, R.W. Poly-hetero-omega-functionalized alkanethiolate-stabilized gold cluster compounds. J. Am. Chem. Soc. 119, 9175–9178 (1997).

    Article  CAS  Google Scholar 

  26. Stellacci, F. et al. Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning. Adv. Mater. 14, 194–198 (2002).

    Article  CAS  Google Scholar 

  27. Sandhyarani, N., Pradeep, T., Chakrabarti, J., Yousuf, M. & Sahu, H.K. Distinct liquid phase in metal-cluster superlattice solids. Phys. Rev. B 62, R739–R742 (2000).

    Article  CAS  Google Scholar 

  28. Fasolka, M.J. & Mayes, A.M. Block copolymer thin films: Physics and applications. Annu. Rev. Mater. Res. 31, 323–355 (2001).

    Article  CAS  Google Scholar 

  29. Hobara, D., Imabayashi, S. & Kakiuchi, T. Preferential adsorption of horse heart cytochrome C on nanometer-scale domains of a phase-separated binary self-assembled monolayer of 3-mercaptopropionic acid and 1-hexadecanethiol on Au(111). Nano Lett. 2, 1021–1025 (2002).

    Article  CAS  Google Scholar 

  30. Satulovsky, J., Carignano, M.A. & Szleifer, I. Kinetic and thermodynamic control of protein adsorption. Proc. Natl Acad. Sci. USA 97, 9037–9041 (2000).

    Article  CAS  Google Scholar 

  31. Kidoaki, S. & Matsuda, T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope. Langmuir 15, 7639–7646 (1999).

    Article  CAS  Google Scholar 

  32. Nelson, D.R. Toward a tetravalent chemistry of colloids. Nano Lett. 2, 1125–1129 (2002).

    Article  CAS  Google Scholar 

  33. Lu, W. & Suo, Z. Symmetry breaking in self-assembled monolayers on solid surfaces. II. Anisotropic substrate elasticity. Phys. Rev. B 65 (2002).

  34. Song, Y., Huang, T. & Murray, R.W. Heterophase Ligand Exchange and Metal Transfer between Monolayer Protected Clusters. J. Am. Chem. Soc. 125, 11694–11701 (2003).

    Article  CAS  Google Scholar 

  35. Terrill, R.H. et al. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 117, 12537–12548 (1995).

    Article  CAS  Google Scholar 

  36. Badia, A. et al. Self-assembled monolayers on gold nanoparticles. Chem. Europ. J. 2, 359–363 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Material Research Science and Education Center Program of the National Science Foundation under award number DMR 02-13282, and made use of its shared facilities. It was also supported by NIRT DMR-0303973 of the National Science Foundation. J.W.M. acknowledges support by the P. E. Gray fund for undergraduate research. The authors are extremely grateful to Blaise Gassend for his contribution to the synthesis of nanoparticles. Mike Frongillo is acknowledged for his invaluable assistance with the TEM images. Dave Voci, Digital Instruments, is acknowledged for his continuing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Stellacci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 290 kb)

Supplementary Information, Table S1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, A., Myerson, J. & Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nature Mater 3, 330–336 (2004). https://doi.org/10.1038/nmat1116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing