Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of carrier density by self-assembled monolayers in organic field-effect transistors

Abstract

Organic thin-film transistors are attracting a great deal of attention due to the relatively high field-effect mobility in several organic materials. In these organic semiconductors, however, researchers have not established a reliable method of doping at a very low density level, although this has been crucial for the technological development of inorganic semiconductors. In the field-effect device structures, the conduction channel exists at the interface between organic thin films and SiO2 gate insulators. Here, we discuss a new technique that enables us to control the charge density in the channel by using organosilane self-assembled monolayers (SAMs) on SiO2 gate insulators. SAMs with fluorine and amino groups have been shown to accumulate holes and electrons, respectively, in the transistor channel: these properties are understood in terms of the effects of electric dipoles of the SAMs molecules, and weak charge transfer between organic films and SAMs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TFTs structure and related SAMs molecules.
Figure 2: X-ray reflection curves against incident angle for the SAMs-SiO2 (400 nm)-Si substrate systems.
Figure 3: Trans-conductance characteristics of pentacene TFT devices grown on different SAMs.
Figure 4: Trans-conductance characteristics of C60 TFT devices grown on different SAMs.
Figure 5: Summary of the threshold voltage Vth in n-type C60 and p-type pentacene TFT devices for different SiO2 treatments, untreated and with three kinds of SAMs.

Similar content being viewed by others

References

  1. Dimitrakopoulos, C.D. & Mascaro, D.J. Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11–27 (2001).

    Article  CAS  Google Scholar 

  2. Dimitrakopoulos, C.D. & Malenfant, P.R.L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  3. Klauk, H., Halik, M., Zschieschang, U., Schmid, G. & Radlik, W. High-mobility polymer gate dielectric pentacene thin film transistors. J. Appl. Phys. 92, 5259–5263 (2002).

    Article  CAS  Google Scholar 

  4. Kobayashi, S., Takenobu, T., Mori, S., Fujiwara, A. & Iwasa, Y. Fabrication and characterization of C60 thin-film transistors with high field-effect mobility. Appl. Phys. Lett. 82, 4581–4583 (2003).

    Article  CAS  Google Scholar 

  5. Malenfant, P.R.L., Dimitrakopoulos, C.D., Gelorme, J.D., Kosbar, L.L. & Graham, T.O. N-type organic thin-film transistor with high field-effect mobility based on a N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 80, 2517–2519 (2002).

    Article  CAS  Google Scholar 

  6. Klauk, H., Gundluch, D.J., Bonse, M., Kuo, C.-C. & Jackson, N.N. A reduced complexity process for organic thin film transistors. Appl. Phys. Lett. 76, 1692–1694 (2000).

    Article  CAS  Google Scholar 

  7. Sze, S.M. in Semiconductor Devices Ch. 5 (Wiley, New York, 1985).

    Google Scholar 

  8. Lin, Y.-Y., Gundlach, D.J., Nelson, S.F. & Jackson, T.N. Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 18, 606–608 (1997).

    Article  CAS  Google Scholar 

  9. Gundlach, D.J., Nichols, J.A., Zhou, L. & Jackson, T.N. Thin-film transistors based on well-ordered thermally evaporated naphthacene films. Appl. Phys. Lett. 80, 2925–2927 (2002).

    Article  CAS  Google Scholar 

  10. Ashkenasy, G., Cahen, D., Cohen, R., Shanzer, A. & Vilan, A. Molecular Engineering of Semiconductor Surfaces and Devices. Acc. Chem. Res. 35, 121–128 (2002).

    Article  CAS  Google Scholar 

  11. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  CAS  Google Scholar 

  12. Mandelis, A. & Christofides, C. Physics, Chemistry and Technology of Solid State Gas Sensor Devices 125 (Wiley, New York, 1993).

    Google Scholar 

  13. Campbell, I.H. et al. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B 54, R14321–R14324 (1996).

    Article  CAS  Google Scholar 

  14. Cambell, I.H., Kress, J.D., Martin, R.L. & Smith, D.L. Controlling charge injection in organic electronic devices using self-assembled monolayers. Appl. Phys. Lett. 71, 3528–3530 (1997).

    Article  Google Scholar 

  15. Sugimura, H., Ushiyama, K., Hozumi, A. & Takai, O. Micropatterning of alkyl- and fluoroalkysilane self-assembled monolayers using vacuum ultraviolet light. Langmuir 16, 885–888 (2000).

    Article  CAS  Google Scholar 

  16. Dulcey, C.S. et al. Deep UV photochemistry of chemisorbed monolayers: Patterned coplananar molecular assemblies. Science 252, 551–554 (1991).

    Article  CAS  Google Scholar 

  17. Stenger, D.A. et al. Assemblies of amino- and perfluorinated alkylsilanes: characterization and geometric definition of mammalian cell adhesion and growth. J. Am. Chem. Soc. 114, 8435–8442 (1992).

    Article  CAS  Google Scholar 

  18. Hozumi, A. et al. Amino-terminated self-assembled monolayer on a SiO2 surface formed by chemical vapor deposotion. J. Vac. Sci. Technol. A 19, 1812–1816 (2001).

    Article  CAS  Google Scholar 

  19. Kojio, K., Tanaka, K., Takahara, A. & Kajiyama, T. Novel method to prepare organosilane monolayer on solid substrate. Chem. Soc. Jpn 74, 1397–1401 (2001).

    Article  CAS  Google Scholar 

  20. Kong, J. & Dai, H. Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J. Phys. Chem. 105, 2890–2893 (2001).

    Article  CAS  Google Scholar 

  21. Haddon, R.C., Perel, A.S., Morris, R.C., Palstra, T.T.M., & Hebard, A.F. C60 thin-film transistors. Appl. Phys. Lett. 67, 121–123 (1995).

    Article  CAS  Google Scholar 

  22. Lee, J., Kim, K., Kim, J.H., Im, S. & Jung, D.-Y. Optimum channel thickness in pentacene-based thin-film transistors. Appl. Phys. Lett. 82, 4169–4171 (2003).

    Article  CAS  Google Scholar 

  23. Mushrush, M., Facchetti, A., Lefenfeld, M., Katz, H.E., & Marks T.J. Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. J. Am. Chem. Soc. 125, 9414–9423 (2003).

    Article  CAS  Google Scholar 

  24. Salleo, A. & Street, R.A. Light-induced bias stress reversal in polyfluorene thin-film transistors. J. Appl. Phys. 94, 471–479 (2003).

    Article  CAS  Google Scholar 

  25. Parratt, L.G. Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359–369 (1954).

    Article  Google Scholar 

  26. Vidal, B. & Vincent, P. Metallic multilayers for X-rays using classical thin-film theory. Appl. Opt. 23, 1794–1801 (1984).

    Article  CAS  Google Scholar 

  27. de Bore, D.K.G. & Leenaers, A.J.G. Probing interface roughness by X-ray scattering. Physica B 221, 18–26 (1996).

    Article  Google Scholar 

  28. Shinha, S.K., Sirota, E.B., Garoff, S & Stanley, H.B. X-Ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297–2311 (1988).

    Article  Google Scholar 

  29. Holy, V., Pietsch, U. & Baumbach, T. High-Resolution X-ray Scattering by Thin Films and Multilayers (Springer, Berlin, 1998).

    Google Scholar 

Download references

Acknowledgements

This work has been partly supported by a Grant (13440110) from The Ministry of Education, Culture, Sports, Science, and Technology, Japan. The authors thank the staff at the Center for Computational Materials Science at the Insitute for Materials Research, Tohoku University, for computational assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Iwasa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, S., Nishikawa, T., Takenobu, T. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nature Mater 3, 317–322 (2004). https://doi.org/10.1038/nmat1105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing