Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled liquid-crystalline gels designed from the bottom up

Abstract

Liquid crystals are often combined with polymers to influence the liquid crystals' orientation and mechanical properties, but at the expense of reorientation speed or uniformity of alignment. We introduce a new method to create self-assembled nematic liquid-crystal gels using an ABA triblock copolymer with a side-group liquid-crystalline midblock and liquid-crystal-phobic endblocks. In contrast to in situ polymerized networks, these physical gels are homogeneous systems with a solubilized polymer network giving them exceptional optical uniformity and well-defined crosslink density. Furthermore, the unusually high-molecular-weight polymers used allow gels to form at lower concentrations than previously accessible. This enables these gels to be aligned by surface anchoring, shear, or magnetic fields. The high content of small-molecule liquid crystal (≥95%) allows access to a regime of fast reorientation dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure of the nematic solvent 5CB and the ABA liquid crystal polymers.
Figure 2: The phase behaviour of the nematic gels.
Figure 3: Neutron-scattering patterns for homopolymers dissolved in perdeuterated 5CB33,34 at a concentration of 5 wt%.
Figure 4: Conoscopic images of 20-wt% ABASiCB5 gel, 400 μm thick, in 5CB at 25 °C.
Figure 5: Photos and cross-section schematics illustrating the electro-optic switching of a 5-wt% ABASiCB4 gel in a 25-μm gap.
Figure 6: Transient electro-optic properties of a 5-wt% ABASiBB, 25-μm-thick layer, under application of a.c. fields at 1,000 Hz.

Similar content being viewed by others

References

  1. de Gennes, P.-G. The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

    Google Scholar 

  2. Assfalg, N. & Finkelmann, H. A smectic A liquid single crystal elastomer (LSCE): Phase behavior and mechanical anisotropy. Macromol. Chem. Phys. 202, 794–800 (2001).

    Article  CAS  Google Scholar 

  3. Sanger, J., Gronski, W., Leist, H. & Wiesner, U. Preparation of a liquid single-crystal triblock copolymer by shear. Macromolecules 30, 7621–7623 (1997).

    Article  Google Scholar 

  4. Finkelmann, H., Kock, H.-J. & Rehage, G. Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers — a new type of liquid crystalline material. Makromol. Chem. Rapid Commun. 2, 317–322 (1981).

    Article  CAS  Google Scholar 

  5. Craighead, H.G., Cheng, J. & Hackwood, S. New display based on electrically induced index matching in an inhomogeneous medium. Appl. Phys. Lett. 40, 22–24 (1982).

    Article  CAS  Google Scholar 

  6. Huitema, H.E.A. et al. Plastic transistors in active-matrix displays. Nature 414, 599 (2001).

    Article  CAS  Google Scholar 

  7. Coates, D. Polymer-dispersed liquid crystals. J. Mater. Chem. 5, 2063–2072 (1995).

    Article  CAS  Google Scholar 

  8. Bouteiller, L. & Le Barny, P. Polymer-dispersed liquid crystals: Preparation, operation, and application. Liq. Cryst. 21, 157–174 (1996).

    Article  CAS  Google Scholar 

  9. Dierking, I. Polymer network-stabilized liquid crystals. Adv. Mater. 12, 167–181 (2000).

    Article  CAS  Google Scholar 

  10. Guymon, C.A. et al. Effects of monomer structure on their organization and polymerization in a smectic liquid crystal. Science 275, 57–59 (1997).

    Article  CAS  Google Scholar 

  11. Hikmet, R.A.M. & Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 392, 476–479 (1998).

    Article  CAS  Google Scholar 

  12. Hikmet, R.A.M. Electrically induced light-scattering from anisotropic gels. J. Appl. Phys. 68, 4406–4412 (1990).

    Article  CAS  Google Scholar 

  13. Hikmet, R.A.M. Anisotropic networks and gels formed by photopolymerisation in the ferroelectric state. J. Mater. Chem. 9, 1921–1932 (1999).

    Article  CAS  Google Scholar 

  14. Terentjev, E.M., Warner, M., Meyer, R.B. & Yamamoto, J. Electromechanical Fredericks effects in nematic gels. Phys. Rev. E 60, 1872–1879 (1999).

    Article  CAS  Google Scholar 

  15. Chang, C.C., Chien, L.C. & Meyer, R.B. Electro-optical study of nematic elastomer gels. Phys. Rev. E 56, 595–599 (1997).

    Article  CAS  Google Scholar 

  16. Kihara, H., Kishi, R., Miura, T., Kato, T. & Ichijo, H. Phase behavior of liquid-crystalline copolymer/liquid crystal blends. Polymer 42, 1177–1182 (2001).

    Article  CAS  Google Scholar 

  17. Chang, M.C. et al. Phase transitions in mixtures of a side-on-side chain liquid crystalline polymer and low molar mass nematic liquid crystals. Liq. Cryst. 25, 733–744 (1998).

    Article  CAS  Google Scholar 

  18. Sanger, J., Tefehne, C., Lay, R. & Gronski, W. A simplified procedure of anionic polymerization of styrene and dienes using 4,5-methylenephenanthrene as an indicator. Polym. Bull. 36, 19–26 (1996).

    Article  Google Scholar 

  19. Ojima, I. et al. Reduction of carbonyl-compounds via hydrosilylation.1. Hydrosilylation of carbonyl-compounds catalyzed by tris(triphenylphosphine)chlororhodium. J. Organometall. Chem. 94, 449–461 (1975).

    Article  CAS  Google Scholar 

  20. Hempenius, M.A., Lammertink, R.G.H. & Vancso, G.J. Well-defined side-chain liquid-crystalline polysiloxanes. Macromol. Rapid Commun. 17, 299–303 (1996).

    Article  CAS  Google Scholar 

  21. Moment, A., Miranda, R. & Hammond, P.T. Synthesis of polystyrene-polysiloxane side-chain liquid crystalline block copolymers. Macromol. Rapid Commun. 19, 573–579 (1998).

    Article  CAS  Google Scholar 

  22. Almdal, K., Dyre, J., Hvidt, S. & Kramer, O. What is a gel? Makromol Chem. Macromol. Symp. 76, 49–51 (1993).

    Article  CAS  Google Scholar 

  23. Li, M.H., Brulet, A., Davidson, P., Keller, P. & Cotton, J.P. Observation of hairpin defects in a nematic main-chain polyester. Phys. Rev. Lett. 70, 2297–2300 (1993).

    Article  CAS  Google Scholar 

  24. Lecommandoux, S., Achard, M.F., Hardouin, F., Brulet, A. & Cotton, J.P. Are nematic side-on polymers totally extended? A SANS study. Liq. Cryst. 22, 549–555 (1997).

    Article  CAS  Google Scholar 

  25. Leroux, N., Keller, P., Achard, M.F., Noirez, L. & Hardouin, F. Small-angle neutron-scattering experiments on side-on fixed liquid-crystal polyacrylates. J. Phys. II 3, 1289–1296 (1993).

    CAS  Google Scholar 

  26. Finkelmann, H., Kim, S.T., Munoz, A., Palffy-Muhoray, P. & Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13, 1069–1072 (2001).

    Article  CAS  Google Scholar 

  27. Van Horn, B.L. & Winter, H.H. Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles. Appl. Optics 40, 2089–2094 (2001).

    Article  CAS  Google Scholar 

  28. Khoo, I.-C. & Wu, S.T. Optics and Nonlinear Optics of Liquid Crystals (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  29. Skarp, K., Lagerwall, S.T. & Stebler, B. Measurements of hydrodynamic parameters for nematic 5CB. Mol. Cryst. Liq. Cryst. 60, 215–236 (1980).

    Article  CAS  Google Scholar 

  30. Yang, D.K., Chien, L.C. & Doane, J.W. Cholesteric liquid-crystal polymer dispersion for haze-free light shutters. Appl. Phys.Lett. 60, 3102–3104 (1992).

    Article  CAS  Google Scholar 

  31. Wu, S.T. & Yang, D.K. Reflective Liquid Crystal Displays (ed. Lowe, A.C.) (Wiley, New York, 2001).

    Google Scholar 

  32. Walba, D.M. Fast ferroelectric liquid-crystal electrooptics. Science 270, 250–251 (1995).

    Article  CAS  Google Scholar 

  33. Wu, S.T., Wang, Q.H., Kempe, M.D. & Kornfield, J.A. Perdeuterated cyanobiphenyl liquid crystals for infrared applications. J. Appl. Phys. 92, 7146–7148 (2002).

    Article  CAS  Google Scholar 

  34. Zimmermann, H. Specifically deuteriated intermediates for the synthesis of liquid crystals and liquid-crystalline polymers. Liq. Cryst. 4, 591–618 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the United States Air Force Office of Scientific Research Liquid Crystal Multidisciplinary Research Program of the University Research Initiative (LC-MURI) (f4962-97-1-0014), the ARCS Foundation, the United States National Science Foundation Department of Materials Research (DMR-0216491), and the United States National Defense Science and Engineering Graduate (NDSEG) Fellowship. We would like to thank Steven Smith of Proctor and Gamble for providing us with 1,2-polybutadiene samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia A. Kornfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kempe, M., Scruggs, N., Verduzco, R. et al. Self-assembled liquid-crystalline gels designed from the bottom up. Nature Mater 3, 177–182 (2004). https://doi.org/10.1038/nmat1074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing