Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones

Abstract

The controlled manipulation of small volumes of liquids is a challenging problem in microfluidics1,2,3,4, and it is a key requirement for many high-throughput analyses and microassays5,6. One-dimensional photonic crystals made from porous silicon have been constructed with amphiphilic properties7. When prepared in the form of micrometre-sized particles and placed in a two-phase liquid such as dichloromethane/water, these materials will accumulate and spontaneously align at the interface. Here we show that superparamagnetic nanoparticles of Fe3O4 can be incorporated into the porous nanostructure, allowing the materials to chaperone microlitre-scale liquid droplets when an external magnetic field is applied. The optical reflectivity spectrum of the photonic crystal displays a peak that serves to identify the droplet. Two simple microfluidics applications are demonstrated: filling and draining a chaperoned droplet, and combining two different droplets to perform a chemical reaction. The method provides a general means for manipulating and monitoring small volumes of liquids without the use of pumps, valves or a microfluidic container.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the synthesis of bifunctional magnetic particles.
Figure 2: Optical microscope images of bifunctional magnetic porous Si particles.
Figure 3: Reflectivity spectra of the bifunctional porous Si particle assembly before and after delivery of payload.
Figure 4: Reflectivity spectra of two sets of porous Si chaperones involved in mixing two chemicals to perform a reaction.

Similar content being viewed by others

References

  1. Aussillous, P. & Quere, D. Liquid marbles. Nature 411, 924–927 (2001).

    Article  CAS  Google Scholar 

  2. Velev, O. D., Prevo, B. G. & Bhatt, K. H. On-chip manipulation of free droplets. Nature 426, 515–516 (2003).

    Article  CAS  Google Scholar 

  3. Zheng, B., Tice, J. D., Roach, L. S. & Ismagilov, R. F. A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew. Chem. Int. Edn 43, 2508–2511 (2004).

    Article  CAS  Google Scholar 

  4. Srinivasan, V., Pamula, V. K. & Fair, R. B. Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal. Chim. Acta 507, 145–150 (2004).

    Article  CAS  Google Scholar 

  5. Liu, J., Hansen, C. & Quake, S. R. Solving the “world-to-chip” interface problem with a microfluidic matrix. Anal. Chem. 75, 4718–4723 (2003).

    Article  CAS  Google Scholar 

  6. Hong, J. W. & Quake, S. R. Integrated nanolitre systems. Nature Biotech. 21, 1179–1183 (2003).

    Article  CAS  Google Scholar 

  7. Link, J. R. & Sailor, M. J. Smart Dust: Self-assembling, self-orienting photonic crystals of porous Si. Proc. Natl Acad. Sci. USA 100, 10607–10610 (2003).

    Article  CAS  Google Scholar 

  8. Schmedake, T. A., Cunin, F., Link, J. R. & Sailor, M. J. Standoff detection of chemicals using porous silicon “Smart Dust” particles. Adv. Mater. 14, 1270–1272 (2002).

    Article  CAS  Google Scholar 

  9. Vincent, G. Optical properties of porous silicon superlattices. Appl. Phys. Lett. 64, 2367–2369 (1994).

    Article  CAS  Google Scholar 

  10. Berger, M. G. et al. Dielectric filters made of porous silicon: advanced performance by oxidation and new layer structures. Thin Solid Films 297, 237–240 (1997).

    Article  CAS  Google Scholar 

  11. Cunin, F. et al. Biomolecular screening with encoded porous silicon photonic crystals. Nature Mater. 1, 39–41 (2002).

    Article  CAS  Google Scholar 

  12. Stewart, M. P. & Buriak, J. M. Photopatterned hydrosilylation on porous silicon. Angew. Chem. Int. Edn Engl. 37, 3257–3260 (1998).

    Article  CAS  Google Scholar 

  13. Boukherroub, R., Wojtyk, J. T. C., Wayner, D. D. M. & Lockwood, D. J. Thermal hydrosilylation of undecylenic acid with porous silicon. J. Electrochem. Soc. 149, 59–63 (2002).

    Article  Google Scholar 

  14. Chan, S., Horner, S. R., Miller, B. L. & Fauchet, P. M. Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 123, 11797–11798 (2001).

    Article  CAS  Google Scholar 

  15. Sailor, M. J. in Properties of Porous Silicon (ed. Canham, L.) 364–370 (Short Run Press, London, 1997).

    Google Scholar 

  16. Collins, B. E., Dancil, K.-P., Abbi, G. & Sailor, M. J. Determining protein size using an electrochemically machined pore gradient in silicon. Adv. Funct. Mater. 12, 187–191 (2002).

    Article  CAS  Google Scholar 

  17. Snow, P. A., Squire, E. K., Russell, P. S. J. & Canham, L. T. Vapor sensing using the optical properties of porous silicon Bragg mirrors. J. Appl. Phys. 86, 1781–1784 (1999).

    Article  CAS  Google Scholar 

  18. Arwin, H. et al. Protein adsorption in thin porous silicon layers. Phys. Status Solidi A 182, 515–520 (2000).

    Article  CAS  Google Scholar 

  19. Urbas, A., Fink, Y. & Thomas, E. L. One-dimensionally periodic dielectric reflectors from self-assembled block copolymer-homopolymer blends. Macromolecules 32, 4748–4750 (1999).

    Article  CAS  Google Scholar 

  20. Meade, S. O., Yoon, M. S., Ahn, K. H. & Sailor, M. J. Porous silicon photonic crystals as encoded microcarriers. Adv. Mater. (in the press).

  21. Bayliss, S. C., Heald, R., Fletcher, D. I. & Buckberry, L. D. The culture of mammalian cells on nanostructured silicon. Adv. Mater. 11, 318–321 (1999).

    Article  CAS  Google Scholar 

  22. Chin, V., Collins, B. E., Sailor, M. J. & Bhatia, S. N. Compatibility of primary hepatocytes with oxidized nanoporous silicon. Adv. Mater. 13, 1877–1880 (2001).

    Article  CAS  Google Scholar 

  23. Berger, P. et al. Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 76, 943–948 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Erkki Ruoslahti of the Burnham Institute for discussions, and Evelyn York of the Scripps Institute of Oceanography, Analytical Instrument Facility, for assistance with the electron microscopy measurements. This project has been funded in part by the Air Force Office of Scientific Research under grant no. F49620-02-1-0288 and by the National Cancer Institute, National Institutes of Health, under contract no. N01-CO-37117. J.D. thanks the UCSD California Institute of Telecommunications and Information Technology for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sailor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorvee, J., Derfus, A., Bhatia, S. et al. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones. Nature Mater 3, 896–899 (2004). https://doi.org/10.1038/nmat1253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing