Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Domain-wall superconductivity in superconductor–ferromagnet hybrids

Abstract

Superconductivity and magnetism are two antagonistic cooperative phenomena, and the intriguing problem of their coexistence has been studied for several decades. Recently, artificial hybrid superconductor–ferromagnet systems have been commonly used as model systems to reveal the interplay between competing superconducting and magnetic order parameters, and to verify the existence of new physical phenomena, including the predicted domain-wall superconductivity (DWS). Here we report the experimental observation of DWS in superconductor–ferromagnet hybrids using a niobium film on a BaFe12O19 single crystal. We found that the critical temperature Tc of the superconductivity nucleation in niobium increases with increasing field until it reaches the saturation field of BaFe12O19. In accordance with the field-shift of the maximum value of Tc, pronounced hysteresis effects have been found in resistive transitions. We argue that the compensation of the applied field by the stray fields of the magnetic domains as well as the change in the domain structure is responsible for the appearance of the DWS and the coexistence of superconductivity and magnetism in the superconductor–ferromagnet hybrids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrations of domain-wall superconductivity (DWS) in superconductor–ferromagnet hybrids.
Figure 2: Magnetization versus applied magnetic field for the BaFe12O19 single-crystal substrate.
Figure 3: A series of MFM images for the BaFe12O19 (0001) substrate measured at room temperature with magnetic field applied perpendicular to the basal plane.
Figure 4: Temperature dependence of resistance R for Nb/BaFe12O19 in the field range 0 to 10 kOe.
Figure 5: Superconducting phase diagram of Nb/BaFe12O19.
Figure 6: Field dependence of resistance of the Nb/BaFe12O19 hybrid system.
Figure 7: Comparison of hysteretic resistive transitions and hysteretic domain evolution.

Similar content being viewed by others

References

  1. Flouquet, J. & Buzdin, A. Ferromagnetic superconductors. Phys. World 15, 41–46 (2002).

    Article  CAS  Google Scholar 

  2. Bulaevskii, L.N., Buzdin, A.I., Kulić, M. L. & Panjukov, S.V. Coexistence of superconductivity and magnetism: theoretical predictions and experimental results. Adv. Phys. 34, 175–261 (1985).

    Article  CAS  Google Scholar 

  3. Aladyshkin, A.Y. et al. Domain-wall superconductivity in hybrid superconductor–ferromagnet structures. Phys. Rev. B 68, 184508 (2003).

    Article  Google Scholar 

  4. Buzdin, A.I. & Mel'nikov, A.S. Domain wall superconductivity in ferromagnetic superconductors. Phys. Rev. B 67, 020503(R) (2003).

    Article  Google Scholar 

  5. Lyuksyutov, I.F. & Pokrovsky, V.L. Magnetization controlled superconductivity in a film with magnetic dots. Phys. Rev. Lett. 81, 2344–2347 (1998).

    Article  CAS  Google Scholar 

  6. Erdin, S., Lyuksyutov, I.F., Pokrovsky, V.L. & Vinokur, V.M. Topological textures in a ferromagnet-superconductor bilayer. Phys. Rev. Lett. 88, 017001 (2002).

    Article  Google Scholar 

  7. Martín, J.I., Vélez, M., Nogués, J. & Schuller, I.K. Flux pinning in a superconductor by an array of submicrometer magnetic dots. Phys. Rev. Lett. 79, 1929–1932 (1997).

    Article  Google Scholar 

  8. Bulaevskii, L.N., Chudnovsky, E.M. & Maley, M.P. Magnetic pinning in superconductor-ferromagnet multilayers. Appl. Phys. Lett. 76, 2594–2596 (2000).

    Article  CAS  Google Scholar 

  9. Helseth, L.E., Goa, P.E., Hauglin, H., Baziljevich, M. & Johansen, T.H. Interaction between a magnetic domain wall and superconductor. Phys. Rev. B 65, 132514 (2002).

    Article  Google Scholar 

  10. Laiho, R., Lähderanta, E., Sonin, E.B. & Traito, K.B. Penetration of vortices into the ferromagnet/type-II superconductor bilayer. Phys. Rev. B 67, 144522 (2003).

    Article  Google Scholar 

  11. Gu, J.Y. et al. Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet–superconductor–ferromagnet system: CuNi/Nb/CuNi. Phys. Rev. Lett. 89, 267001 (2002).

    Article  CAS  Google Scholar 

  12. Golubović, D.S., Pogosov, W.V., Morelle, M. & Moshchalkov, V.V. Little-Parks effect in a superconductor loop with a magnetic dot. Phys. Rev. B 68, 172503 (2003).

    Article  Google Scholar 

  13. Golubović, D.S., Pogosov, W.V., Morelle, M. & Moshchalkov, V.V. Nucleation of superconductivity in an Al mesoscopic disk with magnetic dot. Appl. Phys. Lett. 83, 1593–1595 (2003).

    Article  Google Scholar 

  14. Lange, M., Van Bael, M.J., Bruynseraede, Y. & Moshchalkov, V.V. Nanoengineered magnetic-field-induced superconductivity. Phys. Rev. Lett. 90, 197006 (2003).

    Article  Google Scholar 

  15. Lange, M., Van Bael, M.J., Moshchalkov, V. V. & Bruynseraede, Y. Phase diagram of a superconductor/ferromagnet bilayer. Phys. Rev. B 68, 174522 (2003).

    Article  Google Scholar 

  16. Tachiki, M., Kotani, A., Matsumoto, H. & Umezawa, H. Superconducting Bloch-wall in ferromagnetic superconductors. Solid State Commun. 32, 599–602 (1979).

    Article  CAS  Google Scholar 

  17. Wadas, A., Rice, P. & Moreland, J. Recent results in magnetic force microscopy. Appl. Phys. A 59, 63–67 (1994).

    Article  Google Scholar 

  18. Hubert, A. & Schäfer, R. Magnetic Domains, 401–410 (Springer, Berlin/Heidelberg, 1998).

    Google Scholar 

  19. Goodenough, J.B. Interpretation of domain patterns recently found in BiMn and SiFe alloys. Phys. Rev. 102, 356–365 (1956).

    Article  CAS  Google Scholar 

  20. Zhang, X.X., Hernàndez, J.M., Tejada, J., Solé, R. & Ruiz, X. Magnetic properties and domain-wall motion in single-crystal BaFe10.2Sn0.74Co0.66O19 . Phys. Rev. B 53, 3336–3340 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the K. U. Leuven Research Fund GOA/2004/02, Flemish FWO, Belgian IUAP Projects, Bilateral Flanders–China Project BIL 00/02 and the ESF VORTEX Programme. M.L. is a postdoctoral research fellow of the F.W.O.-Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Moshchalkov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Lange, M., Volodin, A. et al. Domain-wall superconductivity in superconductor–ferromagnet hybrids. Nature Mater 3, 793–798 (2004). https://doi.org/10.1038/nmat1222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing