Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlled assembly of dendrimer-like DNA

Abstract

DNA possesses many desirable chemical/physical properties as a polymeric material. With the myriad of tools available to manipulate DNA1, there is great potential for using DNA as a generic instead of a genetic material. Although much progress has been made in DNA computing2,3,4 and DNA nanotechnology5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, the full achievement of DNA-based materials has not yet been realized. As almost all DNA molecules are either linear or circular, to rationally construct DNA materials one must first create additional shapes of DNA as basic building blocks. In addition, these DNA building blocks must be readily incorporated into larger structures in a controlled manner. Here, we show the controlled assembly of dendrimer-like DNA (DL-DNA) from Y-shaped DNA (Y-DNA). The synthesis of Y-DNA and controlled assembly of DL-DNA were robust and efficient; the resulting DL-DNA was stable and almost monodisperse. The multivalent DNA dendrimers can be either isotropic or anisotropic, providing great potential to link other entities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Y-shaped DNA (Y-DNA).
Figure 2: The first-generation dendrimer-like DNA (G1 DL-DNA).
Figure 3: Higher generation dendrimer-like DNA.

Similar content being viewed by others

References

  1. Luo, D. The road from biology to materials. Mater. Today 6, 38–43 (2003).

    Article  CAS  Google Scholar 

  2. Adleman, L.M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  CAS  Google Scholar 

  3. Sakamoto, K. et al. Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000).

    Article  CAS  Google Scholar 

  4. Benenson, Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001).

    Article  CAS  Google Scholar 

  5. Seeman, N.C. DNA engineering and its application to nanotechnology. Trends Biotechnol. 17, 437–443 (1999).

    Article  CAS  Google Scholar 

  6. Seeman, N.C. DNA components for molecular architecture. Accounts Chem. Res. 30, 357–363 (1997).

    Article  CAS  Google Scholar 

  7. Demers, L.M. et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 296, 1836–1838 (2002).

    Article  CAS  Google Scholar 

  8. Eckardt, L.H. et al. DNA nanotechnology: Chemical copying of connectivity. Nature 420, 286 (2002).

    Article  CAS  Google Scholar 

  9. Mao, C.D., Sun, W.Q., Shen, Z.Y. & Seeman, N.C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999).

    Article  CAS  Google Scholar 

  10. Yan, H., Zhang, X., Shen, Z. & Seeman, N.C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    Article  CAS  Google Scholar 

  11. Winfree, E., Liu, F., Wenzler, L.A. & Seeman, N.C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  12. Alivisatos, A.P. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  13. Niemeyer, C.M., Burger, W. & Peplies, J. Covalent DNA - Streptavidin conjugates as building blocks for novel biometallic nanostructures. Angew. Chem. Int. Edn 37, 2265–2268 (1998).

    Article  CAS  Google Scholar 

  14. Yurke, B., Turberfield, A.J., Mills, A.P. Jr, Simmel, F.C. & Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  15. Watson, K.J., Park, S.J., Im, J.H., Nguyen, S.T. & Mirkin, C.A. DNA-block copolymer conjugates. J. Am. Chem. Soc. 123, 5592–5593 (2001).

    Article  CAS  Google Scholar 

  16. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    Article  CAS  Google Scholar 

  17. Taton, T.A., Mucic, R.C., Mirkin, C.A. & Letsinger, R.L. The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures. J. Am. Chem. Soc. 122, 6305–6306 (2000).

    Article  CAS  Google Scholar 

  18. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. & Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  CAS  Google Scholar 

  19. Keren, K. et al. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).

    Article  CAS  Google Scholar 

  20. Kallenbach, N.R. et al. Fourth rank immobile nucleic acid junctions. J. Biomol. Struct. Dyn. 1, 159–168 (1983).

    Article  CAS  Google Scholar 

  21. Wang, J., Jiang, M., Nilsen, T.W. & Getts, R.C. Dendritic nucleic acid probes for DNA biosensors. J. Am. Chem. Soc. 120, 8281–8282 (1998).

    Article  CAS  Google Scholar 

  22. Nilsen, T.W., Grayzel, J. & Prensky, W. Dendritic nucleic acid structures. J. Theor. Biol. 187, 273–284 (1997).

    Article  CAS  Google Scholar 

  23. LaBean, T.H. et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000).

    Article  CAS  Google Scholar 

  24. Yang, X.P., Wenzler, L.A., Qi, J., Li, X.J. & Seeman, N.C. Ligation of DNA triangles containing double crossover molecules. J. Am. Chem. Soc. 120, 9779–9786 (1998).

    Article  CAS  Google Scholar 

  25. Mao, C.D., Sun, W.Q. & Seeman, N.C. Assembly of Borromean rings from DNA. Nature 386, 137–138 (1997).

    Article  CAS  Google Scholar 

  26. Niemeyer, C.M. Progress in “engineering up” nanotechnology devices utilizing DNA as a construction material. Appl. Phys. A 68, 119–124 (1999).

    Article  CAS  Google Scholar 

  27. Smith, S.B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    Article  CAS  Google Scholar 

  28. Seeman, N.C. De novo design of sequences for nucleic acid structural engineering. J Biomol. Struct. Dyn. 8, 573–581 (1990).

    Article  CAS  Google Scholar 

  29. Hafner, J., Cheung, C.L., Oosterkamp, T.H. & Lieber, C.M. High yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B. 105, 743–746 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Cornell University's Innovation Grant administrated by Cornell Advanced Center for Biotechnology, and performed in part at the Cornell Nanofabrication Facility and Cornell Centre for Materials Research, which is supported by the National Science Foundation, Cornell University and Industrial Affiliates. We thank Francis Moran for preparation of Fig. 1b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Tseng, Y., Kwon, S. et al. Controlled assembly of dendrimer-like DNA. Nature Mater 3, 38–42 (2004). https://doi.org/10.1038/nmat1045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing