Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A family of ductile intermetallic compounds

Abstract

Stoichiometric intermetallic compounds have always been touted for their attractive chemical, physical, electrical, magnetic and mechanical properties, but few practical uses have materialized because they are brittle at room temperature1,2,3,4. Here we report on a large family of fully ordered, stoichiometric binary rare-earth intermetallic compounds with high ductility at room temperature. Although conventional wisdom calls for special conditions, such as non-stoichiometry, metastable disorder or doping to achieve some ductility in intermetallic compounds at room temperature, none of these is required in these unique B2 rare-earth compounds. Ab initio calculations of YAg, YCu and NiAl crystal defect energies support the observed deformation modes of these intermetallics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tensile stress–strain properties of polycrystalline YAg and YCu tested in air at 22 °C.
Figure 2: Optical micrograph of slip lines on the (8̄12) plane surface of a single-crystal YCu tensile-test specimen.
Figure 3: Transmission electron micrographs of dislocation cell structures in a YAg single-crystal tensile specimen after 5% strain under two diffraction conditions: a, g = 011̄ (with a beam direction B = [011]) and b, g = 110 (beam direction B = [1̄13]).
Figure 4: Comparison of anisotropy factor, A−½, versus the Poisson ratio for YAg, YCu and DyCu.

Similar content being viewed by others

References

  1. Cahn, R.W. Intermetallics: new physics. Contemp. Phys. 42, 365–375 ( 2001).

    Article  CAS  Google Scholar 

  2. Chen, G.L. & Liu, C.T. Moisture induced environmental embrittlement of intermetallics. Int. Mater. Rev. 46, 253–270 ( 2001).

    Article  CAS  Google Scholar 

  3. Fleischer, R.L. & Zabala, R.J. Mechanical properties of diverse binary high-temperature intermetallic compounds. Met. Trans. A 21, 2709–2715 ( 1990).

    Article  Google Scholar 

  4. Sauthoff, G. in Intermetallic Compounds: Vol. 1, Principles (eds Westbrook, J.H. & Fleischer, R.L.) 911–934 (Wiley, New York, 1994).

    Google Scholar 

  5. Hahn, K.H. & Vedula, K. Room temperature tensile ductility in polycrystalline B2 NiAl. Scripta Metall. 23, 7–12 ( 1989).

    Article  CAS  Google Scholar 

  6. Liu, C.T., George, E.P., Maziaz, J.H. & Schneibel, J.H. Recent advances in B2 iron aluminide alloys: deformation, fracture, and alloy design. Mater. Sci. Eng. A 258, 84–98 ( 1998).

    Article  Google Scholar 

  7. Takasugi, T., Masahashi, N. & Izumi, O. Electronic and structural studies of grain-boundary strength and fracture in L12 ordered alloys-III. On the effect of stoichiometry. Acta Metall. 35, 381–391 ( 1987).

    Article  CAS  Google Scholar 

  8. Reed-Hill, R.E. & Abbaschian, R. Physical Metallurgy Principles 3rd edn 357 (PWS Kent, Boston, 1992).

    Google Scholar 

  9. Liu, C.T., White, C.L. & Horton, J.A. Effect of boron on grain-boundaries in Ni3Al. Acta Metall. 33, 213–229 ( 1985).

    Article  CAS  Google Scholar 

  10. Sutou, Y., Omori, T., Kainuma, R., Ono, N. & Ishida, K. Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control. Metall. Mater. Trans. A 33, 2817–2824 ( 2002).

    Article  Google Scholar 

  11. Rossi, A. & Iandelli, A. The crystalline structure of PrMg. Atti Accad. Naz. Lin. 18, 156–158 ( 1933).

    CAS  Google Scholar 

  12. Salishchev, G.A. et al. Formation of a submicrocrystalline structure in TiAl and Ti3Al by hot working. Mater. Sci. Eng. A 286, 236–243 ( 2000).

    Article  Google Scholar 

  13. Ritter, C., Ibarra, M.R., & Ibberson, R.M. The low-temperature orthorhombic structure of YCu. J. Phys. Condens. Matter 4, L39–L42 ( 1992).

    Article  Google Scholar 

  14. Ibarra, M.R., Chien, T.S. & Pavlovic, A.S. Structural instability in RCu intermetallic compounds. J. Less Common Metals 153, 233–243 ( 1989).

    Article  CAS  Google Scholar 

  15. Ibarra, M.R., Marquina, C., Pavlovic, A.S. & Ritter, C. Study of the influence of the magnetoelastic energy in driving the magnetic and structural transition in TbCu. J. Appl. Phys. 70, 5989–5991 ( 1991).

    Article  CAS  Google Scholar 

  16. Kim, T., Hong, K.T. & Lee, K.S. The relationship between the fracture toughness and grain boundary character distribution in polycrystalline NiAl. Intermetall. 11, 33–39 ( 2003).

    Article  CAS  Google Scholar 

  17. Vedula, K., Hahn, K.H. & Boulogne, B. in High-Temperature Ordered Intermetallic Alloys III MRS Proc. Vol. 133 (eds Liu, C.T., Taub, A.I., Stolloff, N.S. & C.C. Koch) 299–304 ( 1989).

    Google Scholar 

  18. Causey, A.R. & Teghtsoonian, E. Tensile deformation of polycrystalline beta-prime AuZn. Metall. Trans. 1, 1177–1183 ( 1970).

    Article  CAS  Google Scholar 

  19. Jena, A.K., Westbrook, J.H. & Bever, M.B. Recovery of the cold-worked compound AgMg. ASM Trans. Q 62, 784–793 ( 1969).

    CAS  Google Scholar 

  20. Yamagata, T. Correlation between characters of dislocations and operative slip systems in CsCl-type intermetallic compounds. J. Phys. Soc. Jpn 45, 1575–1582 ( 1978).

    Article  CAS  Google Scholar 

  21. Yoo, M.H., Takasugi, T., Hanada, S. & Izumi, O. Slip modes in B2-type intermetallic alloys. Mater. Trans. JIM 31, 435–442 ( 1990).

    Article  CAS  Google Scholar 

  22. Blaha, P., Schwarz, K. & Luitz, J. WIEN97, A Full Potential Linearized Augmented Plane Wave Package For Calculating Crystal Properties (Karlheinz Schwarz, Technic, Univ. Wien, Austria 1999).

    Google Scholar 

  23. Hong, T. & Freeman, A.J. Effect of antiphase boundaries on the electronic structure and bonding character of intermetallic systems: NiAl. Phys. Rev. B 43, 6446–6458 ( 1991).

    Article  CAS  Google Scholar 

  24. Fu, C.L. & Yoo, M.H. Deformation behaviour of B2 type aluminides: FeAl and NiAl. Acta Metall. Mater. 40, 703–711 ( 1992).

    Article  CAS  Google Scholar 

  25. Rice, J.R. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239–271 ( 1992).

    Article  CAS  Google Scholar 

  26. Rice, J.R. & Beltz, G.E. The activation energy for dislocation nucleation at a crack. J. Mech. Phys. Solids 42, 333–360 ( 1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. K. Pecharsky, S. B. Biner and B. N. Harmon for their comments and valuable suggestions. We gratefully acknowledge the support of the Iowa State University, Institute for Physical Research and Technology and the Ames Laboratory of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under Contract No. W-7405-ENG-82.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Gschneidner Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gschneidner, K., Russell, A., Pecharsky, A. et al. A family of ductile intermetallic compounds. Nature Mater 2, 587–591 (2003). https://doi.org/10.1038/nmat958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing