Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth of 'dizzy dendrites' in a random field of foreign particles

Abstract

Microstructure plays an essential role in determining the properties of crystalline materials1. A widely used method to influence microstructure is the addition of nucleating agents1. Observations on films formed from clay–polymer blends indicate that particulate additives, in addition to serving as nucleating agents, may also perturb crystal growth, leading to the formation of irregular dendritic morphologies2,3. Here we describe the formation of these 'dizzy dendrites' using a phase-field theory, in which randomly distributed foreign particle inclusions perturb the crystallization by deflecting the tips of the growing dendrite arms. This mechanism of crystallization, which is verified experimentally, leads to a polycrystalline structure dependent on particle configuration and orientation. Using computer simulations we demonstrate that additives of controlled crystal orientation should allow for a substantial manipulation of the crystallization morphology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental versus simulated dendrites.
Figure 2: 'Dizzy' dendrites.
Figure 3: Interaction of pinning centres with a dendrite tip of initial orientation, θ = 0 (fast growth direction is downwards).
Figure 4: Sequence of snapshots taken by optical microscope that shows the engulfment of a clay particle (dark spot marked by red arrow) by the advancing PEO dendrite.
Figure 5: Orientation map for the 'dizzy' dendritic particle from simulation shown in Fig. 2.
Figure 6: Phase-field simulations for complex pinning conditions.

Similar content being viewed by others

References

  1. Cahn, R.W. The Coming of Materials Science (Pergamon, Oxford, 2001).

    Google Scholar 

  2. Ferreiro, V., Douglas, J.F., Warren, J.A. & Karim, A. Nonequilibrium pattern formation in the crystallization of polymer blend films. Phys. Rev. E 65, 042802 (2002).

    Article  Google Scholar 

  3. Ferreiro, V., Douglas, J.F., Warren, J.A. & Karim, A. Growth pulsations in symmetric dendritic crystallization in polymer blend films. Phys. Rev. E 65, 051606 (2002).

    Article  Google Scholar 

  4. Keith, H.D. & Padden, F.J. Crystallization of polymers from the melt and the structure of bulk semicrystalline polymers. J. Appl. Phys. 34, 2409–2421 (1963).

    Article  CAS  Google Scholar 

  5. Gránásy, L., Börzsönyi, T. & Pusztai, T. Nucleation and bulk crystallization in binary phase field theory. Phys. Rev. Lett. 88, 206105 (2002).

    Article  Google Scholar 

  6. Gránásy, L., Börzsönyi, T. & Pusztai, T. Crystal nucleation and growth in binary phase field theory. J. Cryst. Growth 237–239, 1813–1817 (2002).

    Article  Google Scholar 

  7. Warren, J.A. & Boettinger, W.J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall. Mater. 43, 689–703 (1995).

    Article  CAS  Google Scholar 

  8. Kobayashi, R., Warren, J.A. & Carter, W.C. Vector-valued phase field model for crystallization and grain boundary formation. Physica D 119, 415–423 (1998).

    Article  CAS  Google Scholar 

  9. Kobayashi, R., Warren, J.A. & Carter, W.C. Modeling grain boundaries using a phase-field technique. Physica D 140, 141–150 (2000).

    Article  Google Scholar 

  10. Huisman, W.J. et al. Layering of a liquid metal in contact with a hard wall. Nature 390, 379–381 (1997).

    Article  CAS  Google Scholar 

  11. Davidchack, R.L & Laird, B.B. Simulation of the hard-sphere crystal-melt interface. J. Chem. Phys. 108, 9452–9462 (1998).

    Article  CAS  Google Scholar 

  12. Hoyt, J.J., Asta, M. & Karma, A. Method for computing the anisotropy of the solid-liquid interfacial free energy. Phys. Rev. Lett. 86, 5530–5533 (2001).

    Article  CAS  Google Scholar 

  13. Stefanescu, D.M., Moitra, A., Kacar, A.S. & Dhindaw, B.K. The influence of buoyant forces and volume fraction of particles on the particle pushing/entrapment transition during directional solidification of Al/SiC and Al/graphite composites. Metall. Trans. A 29, 231–239 (1990).

    Article  Google Scholar 

  14. Magill, J.H. Spherulites: A personal perspective. J. Mater. Sci. 36, 3143–3164 (2001).

    Article  CAS  Google Scholar 

  15. Eggleston, J.J., McFadden, G.B. & Voorhees, P.W. A phase-field model for highly anisotropic interfacial energy. Physica D 150, 91–103 (2001).

    Article  CAS  Google Scholar 

  16. Allen, L., Beijersbergen, M.W., Spreeuw R.J.C. & Woerdman, J.P. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  CAS  Google Scholar 

  17. Sekhar, J.A. & Trivedi, R. Solidification microstructure evolution in the presence of inert particles. Mater. Sci. Eng. A 147, 9–21(1991).

    Article  Google Scholar 

  18. Rohatgi, P.K., Pasciak, K., Narendranath, C.S., Ray, S. & Sachdev, A. Evolution of microstructure and local thermal conditions during directional solidification of A356-SiC particle composites. J. Mater. Sci. 29, 5357–5366 (1994).

    Article  CAS  Google Scholar 

  19. Dutta, B. & Surappa, M.K. Directional dendritic solidification of a composite slurry: Part I. Dendrite morphology. Metall. Mater. Trans. A 29, 1319–1327 (1998).

    Article  Google Scholar 

  20. Dutta, B. & Surappa, M.K. Directional dendritic solidification of a composite slurry: Part II. Particle distribution. Metall. Mater. Trans. A 29, 1329–1339 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by contracts OTKA-T-037323, ESA Prodex 14613/00/NL/SFe, and ESA MAP Project No. AO-99-101. The authors would like to thank W. J. Boettinger for his helpful comments and criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Gránásy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gránásy, L., Pusztai, T., Warren, J. et al. Growth of 'dizzy dendrites' in a random field of foreign particles. Nature Mater 2, 92–96 (2003). https://doi.org/10.1038/nmat815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing