Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Surface-stress-induced phase transformation in metal nanowires

Abstract

Several researchers1,2,3,4,5,6,7,8 have demonstrated, through experiments and analysis, that the structure and properties of nanometre-scale materials can be quite different to those of bulk materials due to the effect of surfaces. Here we use atomistic simulations to study a surface-stress-induced phase transformation in gold nanowires. The emergence of the transformation is controlled by wire size, initial orientation, boundary conditions, temperature and initial cross-sectional shape. For a <100> initial crystal orientation and wire cross-sectional area below 4 nm2, surface stresses alone cause gold nanowires to transform from a face-centred-cubic structure to a body-centred-tetragonal structure. The transformation occurs roughly when the compressive stress caused by tensile surface-stress components in the length direction exceeds the compressive stress required to transform bulk gold to its higher energy metastable crystal structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phase transformation in the 1.83 nm × 1.83 nm <100> wire.
Figure 2: The dynamic progression of the phase transformation in the 1.83 nm × 1.83 nm nanowire at 100 K.
Figure 3: Uniaxial stress–strain curve of bulk gold under compression and unloading curves from paths (2) and (3) (see text).

Similar content being viewed by others

References

  1. Kondo, Y., Ru, Q. & Takayanagi, K. Thickness induced structural phase transition of gold nanofilm. Phys. Rev. Lett. 82, 751–754 (1999).

    Article  CAS  Google Scholar 

  2. Hasmy, A. & Medina, E. Thickness induced structural transition in suspended fcc metal nanofilms. Phys. Rev. Lett. 88, 096103 (2002).

    Article  Google Scholar 

  3. Kondo, Y. & Takayanagi, K. Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 79, 3455–3458 (1997).

    Article  CAS  Google Scholar 

  4. Kondo, Y. & Takayanagi, K. Synthesis and characterization of helical multi–shell gold nanowires. Science 289, 606–608 (2000).

    Article  CAS  Google Scholar 

  5. Gülseren, O., Ercolessi, F. & Tosatti, E. Noncrystalline structures of ultrathin unsupported nanowires. Phys. Rev. Lett. 80, 3775–3778 (1998).

    Article  Google Scholar 

  6. Tosatti, E., Prestipino, S., Kostlmeier, S., Dal Corso, A. & Di Tolla, F.D. String tension and stability of magic tip-suspended nanowires. Science 291, 288–290 (2001).

    Article  CAS  Google Scholar 

  7. Hall, B.D., Flüeli, M., Monot, R. & Borel, J.–P. Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction. Phys. Rev. B 43, 3906–3917 (1991).

    Article  CAS  Google Scholar 

  8. Marks, L.D. Surface structure and energetics of multiply twinned particles. Philos. Mag. A 49, 81–93 (1984).

    Article  CAS  Google Scholar 

  9. Van Hove M.A. et al. The surface reconstructions of the (100) crystal faces of Iridium, Platinum and Gold. Surf. Sci. 103, 189–217 (1981).

    Article  CAS  Google Scholar 

  10. Yamazaki K., Takayanagi, K., Tanishiro, Y. & Yagi, K. Transmission electron microscope study of the reconstructed Au(100) surface. Surf. Sci. 199, 595–608 (1988).

    Article  CAS  Google Scholar 

  11. Fiorentini, V., Methfessel, M. & Schoffler, M. Reconstruction mechanism of fcc transition metal (001) surfaces. Phys. Rev. Lett. 71, 1051–1054 (1993).

    Article  CAS  Google Scholar 

  12. Binnig, G.K., Rohrer, H., Gerber, Ch. & Stoll, E. Real-space observation of the reconstruction of Au(100). Surf. Sci. 144, 321–335 (1984).

    Article  CAS  Google Scholar 

  13. Gibbs, D., Ocko, B.M., Zehner, D.M. & Mochrie S.G.J. Absolute x-ray reflectivity study of the Au(100) surface. Phys. Rev. B 38, 7303–7310 (1988).

    Article  CAS  Google Scholar 

  14. Baskes, M.I. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727–2742 (1992).

    Article  CAS  Google Scholar 

  15. Baskes, M.I., Angelo, J.E. & Bisson, C.L. Atomistic calculations of composite interfaces. Model. Simul. Mater. Sci. Eng. 2, 505–518 (1994).

    Article  Google Scholar 

  16. Kelchner, C.L., Plimpton, S.J. & Hamilton, J.C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998).

    Article  CAS  Google Scholar 

  17. Hahn, E., Kampshoff, E., Wälchli, N. & Kern, K. Strain driven fcc-bct phase transition of pseudomorphic Cu films on Pd(100). Phys. Rev. Lett. 74, 1803–1806 (1995).

    Article  CAS  Google Scholar 

  18. Streitz, F.H., Cammarata, R.C. & Sieradzki, K. Surface-stress effects on elastic properties. I. Thin metal films. Phys. Rev. B 49, 10699–10706 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Sandia National Laboratories and the National Science Foundation, USA. The authors thank Jon Zimmerman for his insightful discussions and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankuai Diao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diao, J., Gall, K. & Dunn, M. Surface-stress-induced phase transformation in metal nanowires. Nature Mater 2, 656–660 (2003). https://doi.org/10.1038/nmat977

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat977

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing