Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stainless steel optimization from quantum mechanical calculations

Abstract

Alloy steel design has always faced a central problem: designing for a specific property very rarely produces a simultaneous significant improvement in other properties1,2. For instance, it is difficult to design a material that combines high values of two of the most important mechanical characteristics of metals, hardness and ductility. Here we use the most recent quantum theories of random alloys3 to address a similar problem in the design of austenitic stainless steels, namely, to combine high mechanical characteristics with good resistance against localized corrosion. We show that an optimal combination of these basic properties can be achieved in alloys within the compositional range of commercial stainless steels. We predict, first, that Fe58Cr18Ni24 alloys possess an intermediate hardness combined with improved ductility and excellent corrosion resistance, and, second, that osmium and iridium alloying additions will further improve the basic properties of this outstanding class of alloy steels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elastic property maps of austenitic stainless steels.
Figure 2: Austenitic stainless-steel grade Fe-18Cr-24Ni.

Similar content being viewed by others

References

  1. Olson, G.B. Design a new material world. Science 288, 993–998 (2000).

    Article  CAS  Google Scholar 

  2. Amato, I. What's cooking in the chem labs? Fortune 141, No. 8, April 17 (2000).

  3. Vitos, L., Abrikosov, I.A. & Johansson, B. Anisotropic lattice distortions in random alloys from first-principles theory. Phys. Rev. Lett. 88, 156401(4) (2001).

  4. Majumdar, A.K. & v. Blanckenhagen, P. Magnetic phase diagram of Fe80−xNixCr20 (10≤x≤30) alloys. Phys. Rev. B 29, 4079–4085 (1984).

    Article  CAS  Google Scholar 

  5. Ryan, M.P., Williams, D.E., Chater, R.J., Hutton, B.M. & McPhail, D.S. Why stainless steel corrodes. Nature 415, 770–774 (2002).

    Article  CAS  Google Scholar 

  6. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, 864–871 (1964).

    Article  Google Scholar 

  7. Soven, P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809–813 (1967).

    Article  CAS  Google Scholar 

  8. Vitos, L. Total energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B 64, 014107 (2001).

  9. Andersen, O.K., Jepsen, O. & Krier, G. in Lectures on Methods of Electronic Structure Calculations (eds Kumar, V., Andersen, O.K. & Mookerjee, A.) 63–124 (World Scientific, Singapore, 1994).

    Google Scholar 

  10. Perdew, J.P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  11. Staunton, J., Györffy, B.L., Pindor, A.J., Stocks, G.M. & Winter, H. The disordered local moment picture of itinerant magnetism at finite temperatures. J. Magn. Magn. Mater. 45, 15–22 (1984).

    Article  CAS  Google Scholar 

  12. Ledbetter, H.M. in Handbook of Elastic Properties of Solids, Liquids, Gases Vol. III (eds Levy, M., Bass, H. E. & Stern, R. R.) 291–298; 313–324 (Academic, San Diego, 2001).

    Google Scholar 

  13. Clerc, D.G. & Ledbetter, H.M. Mechanical hardness: a semiempirical theory based on screened electrostatics and elastic shear. J. Phys. Chem. Solids 59, 1071–1095 (1998).

    Article  CAS  Google Scholar 

  14. Clerc, D.G. Mechanical hardness and elastic stiffness of alloys: semiempirical models. J. Phys. Chem. Solids 60, 83–102 (1999).

    Article  CAS  Google Scholar 

  15. Gschneidner, K.A. Physical properties and interrelationships of metallic and semimetallic elements. Solid State Phys. 16, 275–426 (1964).

    Article  CAS  Google Scholar 

  16. Pugh, S.F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 45, 823–843 (1954).

    Article  CAS  Google Scholar 

  17. McCafferty, E. Oxide networks, graph theory, and the passivity of binary alloys. Corros. Sci. 44, 1393–1409 (2002).

    Article  CAS  Google Scholar 

  18. Vijh, A.K. The pitting corrosion potentials of metals and surface alloys in relation to their solid state cohesion. Mater. Chem. Phys. 20, 371–380 (1988).

    Article  CAS  Google Scholar 

  19. Vijh, A.K. The dependence of the pitting potentials of aluminum alloys on the solid-state cohesion of the alloying metals. Corros. Sci. 36, 1615–1623 (1994).

    Article  CAS  Google Scholar 

  20. Vitos, L., Korzhavyi, P.A. & Johansson, B. Elastic property maps of austenitic stainless steels. Phys. Rev. Lett. 88, 155501(4) (2002).

  21. Arai, M. & Inagaki, M. High-strength austenitic steel sinters showing durable antimicrobial effects and corrosion resistance and their preparation and application. Japanese patent 11,043,748 (1999).

  22. Arai, M., Aono, Y., Nakata, K., Kasahara, S., Kato, T. & Hirano, T. Sintered austenitic stainless steel with corrosion resistance and high strength for nuclear fusion reactor components. European patent 747,497 (1996).

  23. Tendo, M., Yamanaka, M., Tsuchinaga, M. & Tsuboi, H. High-aluminium austenitic steel having excellent hot workability. World patent 9,004,658 (1990).

  24. Angeliu, T.M. Steel alloys. US patent 5,906,791 (1998).

  25. Sileo, G.A., Appleby, J.W., Narsavage, S.T., Alent, F.X. & Davis, C.G. Plasma -sprayed alloy composites with boron nitride for abradable seals of gas-turbine enngines. US patent 5,780,116 (1997).

  26. Kukhar, V.V. Nickel-based resistance alloy. Soviet Union patent 486,695 (1984).

  27. Ledbetter, H.M. & Kim, S.A. Molybdenum effect on Fe–Cr–Ni–alloy elastic constants. J. Mater. Res. 3, 40–44 (1988).

    Article  CAS  Google Scholar 

  28. Friedel, J. in The Physics of Metals (ed. Ziman, J.M.) 494 (Cambridge Univ. Press, 1969).

    Google Scholar 

  29. Fiorentini, V., Methfessel, M., & Scheffler, M. Reconstruction mechanism of fcc transition metal (001) surfaces. Phys. Rev. Lett. 71, 1051–1054 (1993).

    Article  CAS  Google Scholar 

  30. Vitos, L., Ruban, A.V., Skriver, H.L. & Kollár, J. The surface energy of metals. Surf. Sci. 411, 186–202 (1998).

    Article  CAS  Google Scholar 

  31. Ledbetter, H.M. & Austin, M.W. Molybdenum effect on volume in Fe–Cr–Ni alloys. J. Mater. Sci. 33, 3120–3124 (1988).

    Article  Google Scholar 

  32. Dyson, D.J. & Holmes, B. Effect of alloying additions on the lattice parameter of austenite. J. Iron Steel Inst. May, 469–474 (1970).

  33. Wills, J.M., Eriksson, O., Söderlind, P. & Boring, A.M. Trends of the elastic constants of cubic transition metals. Phys. Rev. Lett. 68, 2802–2805 (1992).

    Article  CAS  Google Scholar 

  34. Vitos, L., Korzhavyi, P.A. & Johansson, B. Austenitic stainless steel. Swedish patent pending SE0200554-4 (2002).

Download references

Acknowledgements

The Swedish Research Council, the Swedish Foundation for Strategic Research and The Royal Swedish Academy of Sciences are acknowledged for financial support. Part of this work was supported by the research project OTKA T035043 of the Hungarian Scientific Research Fund and by the Hungarian Academy of Science and the EC Centre of Excellence program (no. ICA1-CT-2000-70029). The computer simulations were done at the Swedish National Supercomputer Center, Linköping, and Hungarian National Supercomputer Center, Budapest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Vitos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitos, L., Korzhavyi, P. & Johansson, B. Stainless steel optimization from quantum mechanical calculations. Nature Mater 2, 25–28 (2003). https://doi.org/10.1038/nmat790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat790

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing