Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions

Abstract

Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of iPOLYMER and in silico analysis on network formation.
Figure 2: iPOLYMER puncta formation in living cells.
Figure 3: Biophysical and ultrastructural analysis of iPOLYMER in living cells.
Figure 4: In vitro characterization of iPOLYMER.
Figure 5: Reconstituting RNA granules by using iPOLYMER as scaffold.
Figure 6: Light-inducible and reversible iPOLYMER-LI succeeded in RNA granule reconstitution.

Similar content being viewed by others

References

  1. Hoffman, A. S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54, 3–12 (2002).

    Article  CAS  Google Scholar 

  2. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200 (2010).

    Article  CAS  Google Scholar 

  3. Lieleg, O. & Ribbeck, K. Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 21, 543–551 (2011).

    Article  CAS  Google Scholar 

  4. Lai, S. K., Wang, Y.-Y., Wirtz, D. & Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61, 86–100 (2009).

    Article  CAS  Google Scholar 

  5. Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. Cell 149, 1188–1191 (2012).

    Article  CAS  Google Scholar 

  6. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  Google Scholar 

  7. Hyman, A. A. & Simons, K. Cell biology. Beyond oil and water–phase transitions in cells. Science 337, 1047–1049 (2012).

    Article  CAS  Google Scholar 

  8. Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    Article  CAS  Google Scholar 

  9. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  Google Scholar 

  10. Aggarwal, S. et al. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLoS Biol. 11, e1001577 (2013).

    Article  CAS  Google Scholar 

  11. Sackmann, E. How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells. Biochim. Biophys. Acta 1853, 3132–3142 (2015).

    Article  CAS  Google Scholar 

  12. Deek, J., Chung, P. J., Kayser, J., Bausch, A. R. & Safinya, C. R. Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels. Nat. Commun. 4, 2224 (2013).

    Article  CAS  Google Scholar 

  13. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    Article  CAS  Google Scholar 

  14. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    Article  CAS  Google Scholar 

  15. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  Google Scholar 

  16. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  Google Scholar 

  17. Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  CAS  Google Scholar 

  18. Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829–839 (2015).

    Article  CAS  Google Scholar 

  19. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    Article  CAS  Google Scholar 

  20. Zhang, H. et al. RNA controls PolyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    Article  CAS  Google Scholar 

  21. Kwon, I. et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139–1145 (2014).

    Article  CAS  Google Scholar 

  22. Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

    Article  CAS  Google Scholar 

  23. Wippich, F. et al. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152, 791–805 (2013).

    Article  CAS  Google Scholar 

  24. Khademhosseini, A. & Langer, R. Microengineered hydrogels for tissue engineering. Biomaterials 28, 5087–5092 (2007).

    Article  CAS  Google Scholar 

  25. Hoare, T. R. & Kohane, D. S. Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008).

    Article  CAS  Google Scholar 

  26. Iwasaki, T. & Wang, Y.-L. Cytoplasmic force gradient in migrating adhesive cells. Biophys. J. 94, L35–L37 (2008).

    Article  CAS  Google Scholar 

  27. Yang, Z. M., Xu, K. M., Guo, Z. F., Guo, Z. H. & Xu, B. Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv. Mater. 19, 3152–3156 (2007).

    Article  CAS  Google Scholar 

  28. Hülsmann, B. B., Labokha, A. A. & Görlich, D. The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150, 738–751 (2012).

    Article  CAS  Google Scholar 

  29. DeRose, R., Miyamoto, T. & Inoue, T. Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflüg. Arch. Eur. J. Physiol. 465, 409–417 (2013).

    Article  CAS  Google Scholar 

  30. Tanaka, F. Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  31. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  Google Scholar 

  32. Lin, Y.-C. et al. Rapidly reversible manipulation of molecular activity with dual chemical dimerizers. Angew. Chem. Int. Ed Engl. 52, 6450–6454 (2013).

    Article  CAS  Google Scholar 

  33. Lin, Y.-C. et al. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat. Chem. Biol. 9, 437–443 (2013).

    Article  CAS  Google Scholar 

  34. McLauchlan, H. J., James, J., Lucocq, J. M. & Ponnambalam, S. Characterization and regulation of constitutive transport intermediates involved in trafficking from the trans-Golgi network. Cell Biol. Int. 25, 705–713 (2001).

    Article  CAS  Google Scholar 

  35. Kedersha, N., Ivanov, P. & Anderson, P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem. Sci. 38, 494–506 (2013).

    Article  CAS  Google Scholar 

  36. Souquere, S. et al. Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J. Cell Sci. 122, 3619–3626 (2009).

    Article  CAS  Google Scholar 

  37. Gilks, N. et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383–5398 (2004).

    Article  CAS  Google Scholar 

  38. Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    Article  CAS  Google Scholar 

  39. Kedersha, N. & Anderson, P. Mammalian stress granules and processing bodies. Methods Enzymol. 431, 61–81 (2007).

    Article  CAS  Google Scholar 

  40. Kimball, S. R., Horetsky, R. L., Ron, D., Jefferson, L. S. & Harding, H. P. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 284, C273–C284 (2003).

    Article  CAS  Google Scholar 

  41. Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015).

    Article  CAS  Google Scholar 

  42. Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).

    Article  CAS  Google Scholar 

  43. Lee, S. et al. Reversible protein inactivation by optogenetic trapping in cells. Nat. Methods 11, 633–636 (2014).

    Article  CAS  Google Scholar 

  44. Miyazaki, Y. et al. A method to rapidly create protein aggregates in living cells. Nat. Commun. 7, 11689 (2016).

    Article  CAS  Google Scholar 

  45. Inobe, T. & Nukina, N. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins. J. Biosci. Bioeng. 122, 40–46 (2016).

    Article  CAS  Google Scholar 

  46. Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171 (2017).

    Article  CAS  Google Scholar 

  47. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  CAS  Google Scholar 

  48. Lesniak, W. G. et al. Biodistribution of fluorescently labeled PAMAM dendrimers in neonatal rabbits: effect of neuroinflammation. Mol. Pharm. 10, 4560–4571 (2013).

    Article  CAS  Google Scholar 

  49. Banaszynski, L. A., Liu, C. W. & Wandless, T. J. Characterization of the FKBP.rapamycin.FRB ternary complex. J. Am. Chem. Soc. 127, 4715–4721 (2005).

    Article  CAS  Google Scholar 

  50. Doi, M. Second quantization representation for classical many-particle system. J. Phys. Math. Gen. 9, 1465–1477 (1976).

    Article  Google Scholar 

  51. Doi, M. Stochastic theory of diffusion-controlled reaction. J. Phys. Math. Gen. 9, 1479–1495 (1976).

    Article  Google Scholar 

  52. Isaacson, S. A. A convergent reaction–diffusion master equation. J. Chem. Phys. 139, 54101 (2013).

    Article  CAS  Google Scholar 

  53. Isaacson, S. A. & Peskin, C. S. Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J. Sci. Comput. 28, 47–74 (2006).

    Article  Google Scholar 

  54. Isaacson, S. A. Relationship between the reaction–diffusion master equation and particle tracking models. J. Phys. Math. Theor. 41, 65003 (2008).

    Article  Google Scholar 

  55. Fange, D., Berg, O. G., Sjöberg, P. & Elf, J. Stochastic reaction–diffusion kinetics in the microscopic limit. Proc. Natl Acad. Sci. USA 107, 19820–19825 (2010).

    Article  CAS  Google Scholar 

  56. Hellander, S., Hellander, A. & Petzold, L. Reaction–diffusion master equation in the microscopic limit. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85, 42901 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Kedersha and P. Anderson who provided helpful discussions and reagents related to stress granules, to J. L. Pfaltz who collaborated with A.S.A. to develop a modified C++ code for identifying chordless cycles in graphs, and to R. Reed, A. Ewald, H. Sesaki, M. Iijima and S. Regot for sharing their resources for our experiments. We also extend our appreciation to J. P. Gong, I. Hamachi, R. Yoshida for valuable comments on our work. This work was mainly supported by the Johns Hopkins University Catalyst Fund to T.I., and in part by the National Institutes of Health (NIH) (GM092930, DK102910, CA103175 and DK089502 to T.I., and T32GM007445 to A.S.), and the National Science Foundation (NSF) (CCF-1217213 to J.G.).

Author information

Authors and Affiliations

Authors

Contributions

H.N., A.A.L. and T.I. conceived the project. H.N., A.A.L., A.S., Y.-C.L., M.T., R.D. and D.B., performed molecular biology as well as cell biology experiments. H.N., A.A.L., S.R. and A.S. purified proteins under the guidance of W.H. and S.B.G. The biochemical and biophysical experiments were mostly performed by H.N. and A.A.L., and partially by S.R. and Y.-C.L. H.N., A.A.L. and T.I. wrote the manuscript with the help of J.G. A.S.A. and J.G. developed the computational model, analysed the computational results, and wrote the computational parts of the paper. A.S.A. wrote appropriate code and conducted the computational experiments. S.W. performed correlated EM measurement and analysis. E.R. and B.H. performed development and demonstration of light-inducible iPOLYMER with H.N.

Corresponding authors

Correspondence to Ali Sobhi Afshar or Takanari Inoue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5698 kb)

Supplementary Information

Supplementary movie 1 (AVI 5224 kb)

Supplementary Information

Supplementary movie 2 (AVI 4778 kb)

Supplementary Information

Supplementary movie 3 (AVI 4679 kb)

Supplementary Information

Supplementary movie 4 (AVI 4747 kb)

Supplementary Information

Supplementary movie 5 (AVI 4808 kb)

Supplementary Information

Supplementary movie 6 (AVI 616 kb)

Supplementary Information

Supplementary movie 7 (AVI 6101 kb)

Supplementary Information

Supplementary movie 8 (AVI 10182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H., Lee, A., Afshar, A. et al. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions. Nature Mater 17, 79–89 (2018). https://doi.org/10.1038/nmat5006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing