Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets

Abstract

Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counter-intuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The formation of CdSe NPLs in isotropic melts of Cd(carboxylate)2 and elemental Se.
Figure 2: Thickness transitions in CdSe NPLs.
Figure 3: Theory of the intrinsic growth instability leading to NPLs.
Figure 4: Shape distribution of nanocrystals grown via kinetic Monte Carlo simulations.

Similar content being viewed by others

References

  1. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    CAS  Google Scholar 

  2. Xia, Y. N., Xiong, Y. J., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. 48, 60–103 (2009).

    CAS  Google Scholar 

  3. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  4. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    CAS  Google Scholar 

  5. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003).

    CAS  Google Scholar 

  6. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, and teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    CAS  Google Scholar 

  7. Milliron, D. J. et al. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190–195 (2004).

    CAS  Google Scholar 

  8. Liu, L. et al. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 131, 16423–16429 (2009).

    CAS  Google Scholar 

  9. Joo, J., Son, J. S., Kwon, S. G., Yu, J. H. & Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 128, 5632–5633 (2006).

    CAS  Google Scholar 

  10. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    CAS  Google Scholar 

  11. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    CAS  Google Scholar 

  12. Tyagi, P., Arveson, S. M. & Tisdale, W. A. Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement. J. Phys. Chem. Lett. 6, 1911–1916 (2015).

    CAS  Google Scholar 

  13. Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

    CAS  Google Scholar 

  14. Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    CAS  Google Scholar 

  15. Shamsi, J. et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016).

    CAS  Google Scholar 

  16. Schliehe, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 329, 550–553 (2010).

    CAS  Google Scholar 

  17. Liu, Y.-H., Wang, F., Wang, Y., Gibbons, P. C. & Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 133, 17005–17013 (2011).

    CAS  Google Scholar 

  18. Achtstein, A. W. et al. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 12, 3151–3157 (2012).

    CAS  Google Scholar 

  19. Pelton, M., Ithurria, S., Schaller, R. D., Dolzhnikov, D. S. & Talapin, D. V. Carrier cooling in colloidal quantum wells. Nano Lett. 12, 6158–6163 (2012).

    CAS  Google Scholar 

  20. Rowland, C. E. et al. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids. Nat. Mater. 14, 484–489 (2015).

    CAS  Google Scholar 

  21. Guzelturk, B., Erdem, O., Olutas, M., Kelestemur, Y. & Demir, H. V. Stacking in colloidal nanoplatelets: tuning excitonic properties. ACS Nano 8, 12524–12533 (2014).

    CAS  Google Scholar 

  22. Olutas, M. et al. Lateral size-dependent spontaneous and stimulated emission properties in colloidal CdSe nanoplatelets. ACS Nano 9, 5041–5050 (2015).

    CAS  Google Scholar 

  23. Yeltik, A. et al. Experimental determination of the absorption cross-section and molar extinction coefficient of colloidal CdSe nanoplatelets. J. Phys. Chem. C 119, 26768–26775 (2015).

    CAS  Google Scholar 

  24. She, C. et al. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 14, 2772–2777 (2014).

    CAS  Google Scholar 

  25. Chen, Z., Nadal, B., Mahler, B., Aubin, H. & Dubertret, B. Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 24, 295–302 (2014).

    CAS  Google Scholar 

  26. Lhuillier, E. et al. Electrolyte-gated field effect transistor to probe the surface defects and morphology in films of thick CdSe colloidal nanoplatelets. ACS Nano 8, 3813–3820 (2014).

    CAS  Google Scholar 

  27. Ithurria, S., Bousquet, G. & Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

    CAS  Google Scholar 

  28. Hutter, E. M. et al. Conformal and atomic characterization of ultrathin CdSe platelets with a helical shape. Nano Lett. 14, 6257–6262 (2014).

    CAS  Google Scholar 

  29. Wang, F. et al. Two-dimensional semiconductor nanocrystals: properties, templated formation, and magic-size nanocluster intermediates. Acc. Chem. Res. 48, 13–21 (2015).

    Google Scholar 

  30. Son, J. S. et al. Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. Angew. Chem. Int. Ed. 48, 6861–6864 (2009).

    CAS  Google Scholar 

  31. Wang, Y. et al. The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals: room-temperature growth of crystalline quantum platelets. Chem. Mater. 26, 2233–2243 (2014).

    CAS  Google Scholar 

  32. Mahler, B., Nadal, B., Bouet, C., Patriarche, G. & Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 134, 18591–18598 (2012).

    CAS  Google Scholar 

  33. Harrison, W. & Trotter, J. Crystal and molecular structure of cadmium diacetate dihydrate. J. Chem. Soc. Dalton Trans. 956–960 (1972).

  34. Chen, D., Gao, Y., Chen, Y., Ren, Y. & Peng, X. Structure identification of two-dimensional colloidal semiconductor nanocrystals with atomic flat basal planes. Nano Lett. 15, 4477–4482 (2015).

    CAS  Google Scholar 

  35. Nasilowski, M., Mahler, B., Lhuillier, E., Ithurria, S. & Dubertret, B. Two-dimensional colloidal nanocrystals. Chem. Rev. 116, 10934–10982 (2016).

    CAS  Google Scholar 

  36. Bouet, C. et al. Two-dimensional growth of CdSe nanocrystals, from nanoplatelets to nanosheets. Chem. Mater. 25, 639–645 (2013).

    CAS  Google Scholar 

  37. Mirnaya, T. A. & Volkov, S. V. in Green Industrial Applications of Ionic Liquids (eds Rogers, R. D., Seddon, K. R. & Volkov, S. V.) 439–456 (Springer, 2002).

    Google Scholar 

  38. Tessier, M. D. et al. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 14, 207–213 (2013).

    Google Scholar 

  39. Li, Z. et al. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: synthesis and properties. Nano Res. 5, 337–351 (2012).

    CAS  Google Scholar 

  40. Pedetti, S. et al. Optimized synthesis of CdTe nanoplatelets and photoresponse of CdTe nanoplatelets films. Chem. Mater. 25, 2455–2462 (2013).

    CAS  Google Scholar 

  41. Lovette, M. A. et al. Crystal shape engineering. Ind. Eng. Chem. Res. 47, 9821–9833 (2008).

    Google Scholar 

  42. Ohara, M. & Reid, R. C. Modeling Crystal Growth Rates from Solution (Prentice-Hall, 1973).

    Google Scholar 

  43. Thanh, N. T. K., Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014).

    CAS  Google Scholar 

  44. Scott, R. et al. Temperature dependent radiative and non-radiative recombination dynamics in CdSe-CdTe and CdTe-CdSe type II hetero nanoplatelets. Phys. Chem. Chem. Phys. 18, 3197–3203 (2016).

    CAS  Google Scholar 

  45. Fichthorn, K. A. & Weinberg, W. H. Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys. 95, 1090–1096 (1991).

    CAS  Google Scholar 

  46. Hung, A., Muscat, J., Yarovsky, I. & Russo, S. P. Density-functional theory studies of pyrite FeS2(100) and (110) surfaces. Surf. Sci. 513, 511–524 (2002).

    CAS  Google Scholar 

  47. Weber, B., Betz, R., Bauer, W. & Schlamp, S. Crystal structure of iron(II) acetate. Z. Anorg. Allg. Chem. 637, 102–107 (2011).

    CAS  Google Scholar 

  48. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  52. Ott, F. D., Spiegel, L. L., Norris, D. J. & Erwin, S. C. Microscopic theory of cation exchange in CdSe nanocrystals. Phys. Rev. Lett. 113, 156803 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by ETH Research Grant ETH-38 14-1, by the Swiss National Science Foundation under Grant Nos 200021-140617 and 200020-159228, and by the US Office of Naval Research (ONR) through the Naval Research Laboratory’s Basic Research Program (SCE). F.D.O. benefited from an ONR Global travel grant. S.J.P.K. acknowledges funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 339905 (QuaDoPS Advanced Grant). Computations were performed at the ETH High-Performance Computing Cluster Euler and the DoD Major Shared Resource Center at AFRL. We thank A. Sánchez-Ferrer for assistance with the X-ray scattering measurements and R. Mezzenga for equipment access. We acknowledge L. Frenette, O. Hirsch, P. Kumar, D. Koziej, V. Lin, M. Mazzotti, K. McNeill, S. Meyer, M. Niederberger, F. Rabouw, A. Rossinelli, H. Schönberg, O. Waser, C. Willa, F. Rechberger and M. Bärtsch for technical assistance and discussions. We utilized the ScopeM facility at ETH Zurich for electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

A.R., F.D.O., S.C.E. and D.J.N. conceived the experiments and model. Syntheses and optical spectroscopy were performed by A.R., A.M. and P.N.K. X-ray diffraction, differential scanning calorimetry, nuclear magnetic resonance spectroscopy, electron microscopy and energy-dispersive X-ray spectroscopy were carried out by A.R. and P.N.K. Polarized optical and fluorescence microscopy was performed by A.R. with help from S.J.P.K. and F.P. Calculations and simulations were performed by F.D.O. and S.M. The NPL growth model was developed by F.D.O. and S.C.E. with input from A.R. and D.J.N. Both S.C.E. and D.J.N. supervised the work. A.R., F.D.O., S.C.E. and D.J.N. wrote the manuscript. All authors contributed to the discussion of the results and to the revision of the manuscript.

Corresponding authors

Correspondence to Steven C. Erwin or David J. Norris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 12178 kb)

Supplementary Information

Supplementary Movie 1 (MP4 1110 kb)

Supplementary Information

Supplementary Movie 2 (MP4 3250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedinger, A., Ott, F., Mule, A. et al. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nature Mater 16, 743–748 (2017). https://doi.org/10.1038/nmat4889

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing