Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche

Abstract

Amniogenesis—the development of amnion—is a critical developmental milestone for early human embryogenesis and successful pregnancy1,2. However, human amniogenesis is poorly understood due to limited accessibility to peri-implantation embryos and a lack of in vitro models. Here we report an efficient biomaterial system to generate human amnion-like tissue in vitro through self-organized development of human pluripotent stem cells (hPSCs) in a bioengineered niche mimicking the in vivo implantation environment. We show that biophysical niche factors act as a switch to toggle hPSC self-renewal versus amniogenesis under self-renewal-permissive biochemical conditions. We identify a unique molecular signature of hPSC-derived amnion-like cells and show that endogenously activated BMP–SMAD signalling is required for the amnion-like tissue development by hPSCs. This study unveils the self-organizing and mechanosensitive nature of human amniogenesis and establishes the first hPSC-based model for investigating peri-implantation human amnion development, thereby helping advance human embryology and reproductive medicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: hPSCs form squamous cysts with amnion-like morphology in an implantation-like niche.
Figure 2: Development of squamous cysts from hPSCs on a synthetic, soft artificial matrix.
Figure 3: Squamous cyst development is transcriptionally distinct from canonical EMT or primitive streak.
Figure 4: Molecular characterization and identification of the squamous, hPSC-derived amnion-like tissue.
Figure 5: Endogenously activated BMP–SMAD signalling is required for the development of hPSC-amnion.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Dobreva, M. P., Pereira, P. N., Deprest, J. & Zwijsen, A. On the origin of amniotic stem cells: of mice and men. Int. J. Dev. Biol. 54, 761–777 (2010).

    Article  CAS  Google Scholar 

  2. Luckett, W. P. The development of primordial and definitive amniotic cavities in early Rhesus monkey and human embryos. Am. J. Anat. 144, 149–167 (1975).

    Article  CAS  Google Scholar 

  3. Ferner, K. & Mess, A. Evolution and development of fetal membranes and placentation in amniote vertebrates. Respir. Physiol. Neurobiol. 178, 39–50 (2011).

    Article  Google Scholar 

  4. Warmflash, A. et al. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    Article  CAS  Google Scholar 

  5. Taniguchi, K. et al. Lumen formation is an intrinsic property of isolated human pluripotent stem cells. Stem Cell Rep. 5, 954–962 (2015).

    Article  CAS  Google Scholar 

  6. Deglincerti, A. et al. Self-organization of the in vitro attached human embryo. Nature 533, 251–254 (2016).

    Article  CAS  Google Scholar 

  7. Shahbazi, M. N. et al. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18, 700–708 (2016).

    Article  CAS  Google Scholar 

  8. O’Leary, T. et al. Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nat. Biotechnol. 30, 278–282 (2012).

    Article  Google Scholar 

  9. Nakamura, T. et al. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62 (2016).

    Article  CAS  Google Scholar 

  10. Lancaster, M. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  Google Scholar 

  11. Enders, A. C., Schlafke, S. & Hendrickx, A. G. Differentiation of the embryonic disc, amnion, and yolk sac in the rhesus monkey. Am. J. Anat. 177, 161–185 (1986).

    Article  CAS  Google Scholar 

  12. Ben-David, U., Nudel, N. & Benvenisty, N. Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat. Commun. 4, 1992 (2013).

    Article  Google Scholar 

  13. Buxboim, A., Rajagopal, K., Brown, A. E. X. & Discher, D. E. How deeply cells feel: methods for thin gels. J. Phys. Condens. Matter. 22, 194116 (2010).

    Article  Google Scholar 

  14. Fu, J. et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7, 733–736 (2010).

    Article  CAS  Google Scholar 

  15. Thiery, J., Acloque, H., Huang, R. & Nieto, M. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  Google Scholar 

  16. Mendjan, S. et al. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15, 310–325 (2014).

    Article  CAS  Google Scholar 

  17. Zhang, X. Q. et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7, 90–100 (2010).

    Article  CAS  Google Scholar 

  18. Sasaki, K. et al. The germ cell fate of cynomolgus monkeys is specified in the nascent amnion. Dev. Cell 39, 169–185 (2016).

    Article  CAS  Google Scholar 

  19. Li, Y. C. et al. BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through ΔNp63(+) cytotrophoblast stem cell state. Development 140, 3965–3976 (2013).

    Article  CAS  Google Scholar 

  20. Lee, C. Q. E. et al. What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem Cell Rep. 6, 257–272 (2016).

    Article  CAS  Google Scholar 

  21. Henderson, J. K. et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20, 329–337 (2002).

    Article  CAS  Google Scholar 

  22. Roost, M. S. et al. KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. Stem Cell Rep. 4, 1112–1124 (2015).

    Article  CAS  Google Scholar 

  23. Miki, T. & Strom, S. C. Amnion-derived pluripotent/multipotent stem cells. Stem Cell Rev. 2, 133–141 (2006).

    Article  CAS  Google Scholar 

  24. Dobreva, M. P. et al. Periostin as a biomarker of the amniotic membrane. Stem Cells Int. 2012, 987185 (2012).

    Article  Google Scholar 

  25. Slieker, R. C. et al. DNA methylation landscapes of human fetal development. PLoS Genet. 11, e1005583 (2015).

    Article  Google Scholar 

  26. Regauer, S., Franke, W. W. & Virtanen, I. Intermediate filament cytoskeleton of amnion epithelium and cultured amnion epithelial-cells—expression of epidermal cytokeratins in cells of a simple epithelium. J. Cell Biol. 100, 997–1009 (1985).

    Article  CAS  Google Scholar 

  27. Mallon, B. S. et al. StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res. 10, 57–66 (2013).

    Article  CAS  Google Scholar 

  28. Pereira, P. N. et al. Amnion formation in the mouse embryo: the single amniochorionic fold model. BMC Dev. Biol. 11, 48 (2011).

    Article  CAS  Google Scholar 

  29. Chen, H. M. et al. Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients. Transl. Psychiatry 4, e375 (2014).

    Article  CAS  Google Scholar 

  30. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686 (2007).

    Article  CAS  Google Scholar 

  31. Tse, J. & Engler, A. Current Protocols in Cell Biology Preparation of hydrogel substrates with tunable mechanical properties. Ch. 10 (Wiley, 2010).

    Google Scholar 

  32. Fischer, R., Myers, K., Gardel, M. & Waterman, C. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nat. Protoc. 7, 2056–2066 (2012).

    Article  CAS  Google Scholar 

  33. Koschwanez, J. H., Carlson, R. H. & Meldrum, D. R. Thin PDMS films using long spin times or tert-butyl alcohol as a solvent. PLoS ONE 4, e4572 (2009).

    Article  Google Scholar 

  34. Shao, Y., Mann, J. M., Chen, W. Q. & Fu, J. P. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction. Integr. Biol. 6, 300–311 (2014).

    Article  CAS  Google Scholar 

  35. Weng, S. & Fu, J. Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials 32, 9584–9593 (2011).

    Article  CAS  Google Scholar 

  36. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  37. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC(T) method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  38. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  39. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  Google Scholar 

  40. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  41. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  42. Saldanha, A. J. Java Treeview—extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  Google Scholar 

  43. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Article  CAS  Google Scholar 

  44. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

  45. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. S. O’Shea, S. Kalantry, T. Miki and W. Shawlot for comments on the manuscript. We are grateful to M. Czerwinski for help with bioinformatics. We thank G. D. Smith at the University of Michigan MStem Cell Laboratories for providing the UM63-1 hESC line and the University of Michigan Pluripotent Stem Cell Core and the Steven Schwartzberg Memorial Fund for the derivation of the 1196a hiPSC line. This work is supported by the National Science Foundation (CMMI 1129611 and CBET 1149401, J.F.), the National Institutes of Health (R21 EB017078 and R01 EB019436, J.F.; R01 DK089933, D.L.G.), and the American Heart Association (12SDG12180025, J.F.). Y.S. is also partially supported by the University of Michigan Rackham Predoctoral Fellowship. The Lurie Nanofabrication Facility at the University of Michigan, a member of the National Nanotechnology Infrastructure Network (NNIN) funded by the National Science Foundation, is acknowledged for support in microfabrication.

Author information

Authors and Affiliations

Authors

Contributions

Y.S., K.T., D.L.G. and J.F. designed experiments; Y.S., K.T., R.F.T., X.X., K.M.A.Y. and J.S. performed experiments; K.G. processed RNA-seq results and performed hierarchical clustering; Y.S., K.T., K.G., J.R.S., D.L.G. and J.F. analysed data and wrote the manuscript. D.L.G. and J.F. supervised the project. All authors contributed to the manuscript.

Corresponding authors

Correspondence to Deborah L. Gumucio or Jianping Fu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4646 kb)

Supplementary Information

Supplementary Table 1 (XLS 3985 kb)

Supplementary Information

Supplementary Table 2 (XLS 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Taniguchi, K., Gurdziel, K. et al. Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nature Mater 16, 419–425 (2017). https://doi.org/10.1038/nmat4829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4829

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research