Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals

Abstract

Nanoscale metallic crystals have been shown to follow a ‘smaller is stronger’ trend. However, they usually suffer from low ductility due to premature plastic instability by source-limited crystal slip. Here, by performing in situ atomic-scale transmission electron microscopy, we report unusual room-temperature super-elongation without softening in face-centred-cubic silver nanocrystals, where crystal slip serves as a stimulus to surface diffusional creep. This interplay mechanism is shown experimentally and theoretically to govern the plastic deformation of nanocrystals over a material-dependent sample diameter range between the lower and upper limits for nanocrystal stability by surface diffusional creep and dislocation plasticity, respectively, which extends far beyond the maximum size for pure diffusion-mediated deformation (for example, Coble-type creep). This work provides insight into the atomic-scale coupled diffusive–displacive deformation mechanisms, maximizing ductility and strength simultaneously in nanoscale materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fundamental difference in room-temperature mechanical behaviours between single-crystalline Ag and Pt nanocrystals observed by in situ TEM.
Figure 2: Surface diffusive plasticity during tensile deformation of a 20-nm Ag nanocrystal.
Figure 3: Slip-activated surface diffusional creep in Ag nanocrystals.
Figure 4: Strain-rate and diameter dependences of tensile ductility driven by crystal slip and surface atom diffusion in 〈112〉-oriented Ag and Pt nanowires subjected to uniaxial deformation at a constant strain rate.

Similar content being viewed by others

References

  1. Oh, S. H., Legros, M., Kiener, D. & Dehm, G. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8, 95–100 (2009).

    Article  CAS  Google Scholar 

  2. Zhu, T., Li, J., Samanta, A., Leach, A. & Gall, K. Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  Google Scholar 

  3. Lu, L., Sui, M. L. & Lu, K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463–1466 (2000).

    Article  CAS  Google Scholar 

  4. McFadden, S. X., Mishra, R. S., Valiev, R. Z., Zhilyaev, A. P. & Mukherjee, A. K. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684–686 (1999).

    Article  CAS  Google Scholar 

  5. Raj, R. & Ashby, M. F. On grain boundary sliding and diffusional creep. Metall. Trans. 2, 1113–1127 (1971).

    Article  Google Scholar 

  6. Yamakov, V., Wolf, D., Phillpot, S. R. & Gleiter, H. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater. 50, 61–73 (2002).

    Article  CAS  Google Scholar 

  7. Shan, Z. W. et al. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654–657 (2004).

    Article  CAS  Google Scholar 

  8. Guo, W., Wang, Z. & Li, J. Diffusive versus displacive contact plasticity of nanoscale asperities: temperature- and velocity-dependent strongest size. Nano Lett. 15, 6582–6585 (2015).

    Article  CAS  Google Scholar 

  9. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K. & Gleiter, H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43–47 (2004).

    Article  CAS  Google Scholar 

  10. Chokshi, A. H., Rosen, A., Karch, J. & Gleiter, H. On the validity of the Hall–Petch relationship in nanocrystalline materials. Scr. Metall. 23, 1679–1683 (1989).

    Article  CAS  Google Scholar 

  11. Meyers, M. A., Mishra, A. & Benson, D. J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006).

    Article  CAS  Google Scholar 

  12. Tian, L., Li, J., Sun, J., Ma, E. & Shan, Z. W. Visualizing size-dependent deformation mechanism transition in Sn. Sci. Rep. 3, 2113 (2013).

    Article  Google Scholar 

  13. Wang, Y. M. & Ma, E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699–1709 (2004).

    Article  CAS  Google Scholar 

  14. Dao, M., Lu, L., Asaro, R. J., De Hosson, J. T. M. & Ma, E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041–4065 (2007).

    Article  CAS  Google Scholar 

  15. Wei, Q., Cheng, S., Ramesh, K. T. & Ma, E. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71–79 (2004).

    Article  Google Scholar 

  16. Ma, E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663–668 (2003).

    Article  CAS  Google Scholar 

  17. Nieman, G. W., Weertman, J. R. & Siegel, R. W. Mechanical-behavior of nanocrystalline Cu and Pd. J. Mater. Res. 6, 1012–1027 (1991).

    Article  CAS  Google Scholar 

  18. Richter, G. et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).

    Article  CAS  Google Scholar 

  19. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  20. Greer, J. R., Oliver, W. C. & Nix, W. D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821–1830 (2005).

    Article  CAS  Google Scholar 

  21. Chen, L. Y., He, M. R., Shin, J., Richter, G. & Gianola, D. S. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat. Mater. 14, 707–713 (2015).

    Article  CAS  Google Scholar 

  22. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat. Mater. 13, 1007–1012 (2014).

    Article  CAS  Google Scholar 

  23. Zhu, Y. et al. Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys. Rev. B 85, 045443 (2012).

    Article  Google Scholar 

  24. Wolf, D., Yamakov, V., Phillpot, S. R., Mukherjee, A. & Gleiter, H. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53, 1–40 (2005).

    Article  CAS  Google Scholar 

  25. Zheng, H. et al. Discrete plasticity in sub-10-nm-sized gold crystals. Nat. Commun. 1, 144 (2010).

    Article  Google Scholar 

  26. Li, J. et al. Diffusive molecular dynamics and its application to nanoindentation and sintering. Phys. Rev. B 84, 054103 (2011).

    Article  Google Scholar 

  27. Mishra, R. S., Valiev, R. Z., McFadden, S. X. & Mukherjee, A. K. Tensile superplasticity in a nanocrystalline nickel aluminide. Mater. Sci. Eng. A 252, 174–178 (1998).

    Article  Google Scholar 

  28. Zhong, L., Wang, J. W., Sheng, H. W., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014).

    Article  CAS  Google Scholar 

  29. Wang, J. W. et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat. Mater. 14, 594–600 (2015).

    Article  CAS  Google Scholar 

  30. Wu, Z. X., Zhang, Y. W., Jhon, M. H., Gao, H. J. & Srolovitz, D. J. Nanowire failure: long = brittle and short = ductile. Nano Lett. 12, 910–914 (2012).

    Article  CAS  Google Scholar 

  31. Rice, J. R. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239–271 (1992).

    Article  CAS  Google Scholar 

  32. Kim, S. Y., Lee, I. H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces. Phys. Rev. B 76, 245407 (2007).

    Article  Google Scholar 

  33. Kim, S. Y., Lee, I. H. & Jun, S. Transition-pathway models of atomic diffusion on fcc metal surfaces. II. Stepped surfaces. Phys. Rev. B 76, 245408 (2007).

    Article  Google Scholar 

  34. Fisher, S. B. On the temperature rise in electron irradiated foils. Radiat. Eff. 5, 239–243 (1970).

    Article  CAS  Google Scholar 

  35. Ala-Nissila, T., Ferrando, R. & Ying, S. C. Collective and single particle diffusion on surfaces. Adv. Phys. 51, 949–1078 (2002).

    Article  CAS  Google Scholar 

  36. Greer, J. R. & Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

    Article  Google Scholar 

  37. Masumura, R. A., Hazzledine, P. M. & Pande, C. S. Yield stress of fine grained materials. Acta Mater. 46, 4527–4534 (1998).

    Article  CAS  Google Scholar 

  38. Ramachandramoorthy, R., Gao, W., Bernal, R. & Espinosa, H. High strain rate tensile testing of silver nanowires: rate-dependent brittle-to-ductile transition. Nano Lett. 16, 255–263 (2016).

    Article  CAS  Google Scholar 

  39. Filleter, T. et al. Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. Small 8, 2986–2993 (2012).

    Article  CAS  Google Scholar 

  40. Zheng, H., Wang, J. W., Huang, J. Y., Wang, J. B. & Mao, S. X. Void-assisted plasticity in Ag nanowires with a single twin structure. Nanoscale 6, 9574–9578 (2014).

    Article  CAS  Google Scholar 

  41. Peng, C., Zhan, Y. J. & Lou, J. Size-dependent fracture mode transition in copper nanowires. Small 8, 1889–1894 (2012).

    Article  CAS  Google Scholar 

  42. Kiener, D. & Minor, A. M. Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett. 11, 3816–3820 (2011).

    Article  CAS  Google Scholar 

  43. Shan, Z. W., Mishra, R. K., Asif, S. A. S., Warren, O. L. & Minor, A. M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115–119 (2008).

    Article  CAS  Google Scholar 

  44. Yu, Q. et al. The nanostructured origin of deformation twinning. Nano Lett. 12, 887–892 (2012).

    Article  CAS  Google Scholar 

  45. Huang, L. et al. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum. Nat. Commun. 2, 547 (2011).

    Article  Google Scholar 

  46. Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  47. Wu, H. H. & Trinkle, D. R. Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data. Comput. Mater. Sci. 47, 577–583 (2009).

    Article  CAS  Google Scholar 

  48. Sheng, H. W., Kramer, M. J., Cadien, A., Fujita, T. & Chen, M. W. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011).

    Article  Google Scholar 

  49. Castro, T., Reifenberger, R., Choi, E. & Andres, R. P. Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys. Rev. B 42, 8548–8556 (1990).

    Article  CAS  Google Scholar 

  50. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

S.X.M. acknowledges support from NSF CMMI 1536811 through University of Pittsburgh. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000), and at the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by US Department of Energy, Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the US Department of Energy under contract DE-AC05-76RLO1830. F.S. acknowledges support from NSF grant No. DMR-1410646 and the computational resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE) supported by NSF grant No. ACI-1053575.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and S.X.M. conceived and designed the experiments. L.Z. and Y.H. conducted the in situ TEM experiments under the direction of S.X.M. L.Z. performed the experimental data analysis. F.S. carried out the computer simulations. F.S. and L.Z. developed the kinetic model. All authors contributed to discussion of the results. L.Z., F.S. and S.X.M. wrote the manuscript.

Corresponding authors

Correspondence to Frederic Sansoz or Scott X. Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2753 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 11479 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 13122 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 7719 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 3991 kb)

Supplementary Movie 5

Supplementary Movie 5 (MOV 21820 kb)

Supplementary Movie 6

Supplementary Movie 6 (MOV 4460 kb)

Supplementary Movie 7

Supplementary Movie 7 (MOV 5942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Sansoz, F., He, Y. et al. Slip-activated surface creep with room-temperature super-elongation in metallic nanocrystals. Nature Mater 16, 439–445 (2017). https://doi.org/10.1038/nmat4813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing