Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells

Abstract

Expansion on stiff culture substrates activates pro-fibrotic cell programs that are retained by mechanical memory. Here, we show that priming on physiologically soft silicone substrates suppresses fibrogenesis and desensitizes mesenchymal stem cells (MSCs) against subsequent mechanical activation in vitro and in vivo, and identify the microRNA miR-21 as a long-term memory keeper of the fibrogenic program in MSCs. During stiff priming, miR-21 levels were gradually increased by continued regulation through the acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and remained high over 2 weeks after removal of the mechanical stimulus. Knocking down miR-21 once by the end of the stiff-priming period was sufficient to erase the mechanical memory and sensitize MSCs to subsequent exposure to soft substrates. Soft priming and erasing mechanical memory following cell culture expansion protects MSCs from fibrogenesis in the host wound environment and increases the chances for success of MSC therapy in tissue-repair applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MSC isolation and expansion on pathophysiologically stiff/soft substrates.
Figure 2: MSCs undergo fibrotic mechanical priming on pathophysiologically stiff substrates.
Figure 3: MRTF-A regulates miR-21 transcription.
Figure 4: MiR-21 controls fibrogenesis of MSCs at the gene transcription level.
Figure 5: MiR-21 preserves mechanical memory in MSCs.
Figure 6: Transplantation of soft-primed MSCs reduces scarring by suppressing myofibroblast formation and tissue contracture.

Similar content being viewed by others

References

  1. Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

    CAS  Google Scholar 

  2. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    CAS  Google Scholar 

  3. Jackson, W. M., Nesti, L. J. & Tuan, R. S. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem. Cell Res. Ther. 3, 20 (2012).

    Google Scholar 

  4. Leclerc, T. et al. Cell therapy of burns. Cell Prolif. 44, 48–54 (2011).

    Google Scholar 

  5. Sorrell, J. M. & Caplan, A. I. Topical delivery of mesenchymal stem cells and their function in wounds. Stem. Cell Res. Ther. 1, 30 (2010).

    Google Scholar 

  6. Hinz, B. et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180, 1340–1355 (2012).

    CAS  Google Scholar 

  7. Hinz, B. The myofibroblast: paradigm for a mechanically active cell. J. Biomech. 43, 146–155 (2010).

    Google Scholar 

  8. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    CAS  Google Scholar 

  9. Majd, H. et al. A novel method of dynamic culture surface expansion improves mesenchymal stem cell proliferation and phenotype. Stem Cells 27, 200–209 (2009).

    CAS  Google Scholar 

  10. Talele, N. P., Fradette, J., Davies, J. E., Kapus, A. & Hinz, B. Expression of α-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep. 4, 1016–1030 (2015).

    CAS  Google Scholar 

  11. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    CAS  Google Scholar 

  12. Achterberg, V. F. et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J. Invest. Dermatol. 134, 1862–1872 (2014).

    CAS  Google Scholar 

  13. Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006).

    CAS  Google Scholar 

  14. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  CAS  Google Scholar 

  15. Jiang, X., Tsitsiou, E., Herrick, S. E. & Lindsay, M. A. MicroRNAs and the regulation of fibrosis. FEBS J. 277, 2015–2021 (2010).

    CAS  Google Scholar 

  16. Chau, B. N. & Brenner, D. A. What goes up must come down: the emerging role of microRNA in fibrosis. Hepatology 53, 4–6 (2011).

    CAS  Google Scholar 

  17. Mann, J. & Mann, D. A. Epigenetic regulation of wound healing and fibrosis. Curr. Opin. Rheumatol. 25, 101–107 (2013).

    CAS  Google Scholar 

  18. Bowen, T., Jenkins, R. H. & Fraser, D. J. MicroRNAs, transforming growth factor β-1, and tissue fibrosis. J. Pathol. 229, 274–285 (2013).

    CAS  Google Scholar 

  19. Pottier, N., Cauffiez, C., Perrais, M., Barbry, P. & Mari, B. FibromiRs: translating molecular discoveries into new anti-fibrotic drugs. Trends Pharmacol. Sci. 35, 119–126 (2014).

    CAS  Google Scholar 

  20. Babalola, O., Mamalis, A., Lev-Tov, H. & Jagdeo, J. The role of microRNAs in skin fibrosis. Arch. Dermatol. Res. 305, 763–776 (2013).

    CAS  Google Scholar 

  21. Fujita, S. et al. miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J. Mol. Biol. 378, 492–504 (2008).

    CAS  Google Scholar 

  22. Zhang, X., Azhar, G., Helms, S. A. & Wei, J. Y. Regulation of cardiac microRNAs by serum response factor. J. Biomed. Sci. 18, 15 (2011).

    Google Scholar 

  23. Crider, B. J., Risinger, G. M. Jr, Haaksma, C. J., Howard, E. W. & Tomasek, J. J. Myocardin-related transcription factors A and B are key regulators of TGF-β1-induced fibroblast to myofibroblast differentiation. J. Invest. Dermatol. 131, 2378–2385 (2011).

    CAS  Google Scholar 

  24. Scharenberg, M. A. et al. TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. J. Cell Sci. 127, 1079–1091 (2014).

    CAS  Google Scholar 

  25. Zhou, Y. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Invest. 123, 1096–1108 (2013).

    CAS  Google Scholar 

  26. Small, E. M. et al. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ. Res. 107, 294–304 (2010).

    CAS  Google Scholar 

  27. Luchsinger, L. L., Patenaude, C. A., Smith, B. D. & Layne, M. D. Myocardin-related transcription factor-A complexes activate type I collagen expression in lung fibroblasts. J. Biol. Chem. 286, 44116–44125 (2011).

    CAS  Google Scholar 

  28. Ho, C. Y., Jaalouk, D. E., Vartiainen, M. K. & Lammerding, J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497, 507–511 (2013).

    CAS  Google Scholar 

  29. Fan, L. et al. Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Mol. Biol. Cell 18, 1083–1097 (2007).

    CAS  Google Scholar 

  30. Esnault, C. et al. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev. 28, 943–958 (2014).

    CAS  Google Scholar 

  31. Cavarretta, E. & Condorelli, G. miR-21 and cardiac fibrosis: another brick in the wall? Eur. Heart J. 36, 2139–2141 (2015).

    CAS  Google Scholar 

  32. Huang, Y., He, Y. & Li, J. MicroRNA-21: a central regulator of fibrotic diseases via various targets. Curr. Pharm. Des. 21, 2236–2242 (2015).

    CAS  Google Scholar 

  33. Wang, T. et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am. J. Pathol. 181, 1911–1920 (2012).

    Google Scholar 

  34. Chen, Z., Dai, T., Chen, X., Tan, L. & Shi, C. Activation and regulation of the granulation tissue derived cells with stemness-related properties. Stem Cell Res. Ther. 6, 85 (2015).

    Google Scholar 

  35. Thum, T. & Lorenzen, J. M. Cardiac fibrosis revisited by microRNA therapeutics. Circulation 126, 800–802 (2012).

    Google Scholar 

  36. Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra118 (2012).

    Google Scholar 

  37. Liu, G. et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207, 1589–1597 (2010).

    CAS  Google Scholar 

  38. Zhu, H. et al. MicroRNA-21 in scleroderma fibrosis and its function in TGF-β-regulated fibrosis-related genes expression. J. Clin. Immunol. 33, 1100–1109 (2013).

    CAS  Google Scholar 

  39. Liang, H. et al. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol. 44, 2152–2160 (2012).

    CAS  Google Scholar 

  40. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    CAS  Google Scholar 

  41. Yao, Q. et al. Micro-RNA-21 regulates TGF-β-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int. J. Cancer 128, 1783–1792 (2011).

    CAS  Google Scholar 

  42. Gong, C. et al. miR-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res. 74, 4341–4352 (2014).

    CAS  Google Scholar 

  43. Parikh, V. N. et al. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125, 1520–1532 (2012).

    CAS  Google Scholar 

  44. Clement, S., Hinz, B., Dugina, V., Gabbiani, G. & Chaponnier, C. The N-terminal Ac-EEED sequence plays a role in {α}-smooth-muscle actin incorporation into stress fibers. J. Cell Sci. 118, 1395–1404 (2005).

    CAS  Google Scholar 

  45. Hinz, B. Myofibroblasts. Exp. Eye Res. 142, 56–70 (2016).

    CAS  Google Scholar 

  46. Li, H., Yang, F., Wang, Z., Fu, Q. & Liang, A. MicroRNA-21 promotes osteogenic differentiation by targeting small mothers against decapentaplegic 7. Mol. Med. Rep. 12, 1561–1567 (2015).

    CAS  Google Scholar 

  47. Song, Q. et al. miR-21 synergizes with BMP9 in osteogenic differentiation by activating the BMP9/Smad signaling pathway in murine multilineage cells. Int. J. Mol. Med. 36, 1497–1506 (2015).

    CAS  Google Scholar 

  48. Trohatou, O. et al. Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl. Med. 3, 54–68 (2014).

    CAS  Google Scholar 

  49. Hinz, B., Mastrangelo, D., Iselin, C. E., Chaponnier, C. & Gabbiani, G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am. J. Pathol. 159, 1009–1020 (2001).

    CAS  Google Scholar 

  50. Davidson, J. M., Yu, F. & Opalenik, S. R. Splinting strategies to overcome confounding wound contraction in experimental animal models. Adv. Wound Care 2, 142–148 (2013).

    Google Scholar 

  51. Hinz, B., Gabbiani, G. & Chaponnier, C. The NH2-terminal peptide of α-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J. Cell Biol. 157, 657–663 (2002).

    CAS  Google Scholar 

  52. Chan, W. L., Silberstein, J. & Hai, C. M. Mechanical strain memory in airway smooth muscle. Am. J. Physiol. 278, C895–C904 (2000).

    CAS  Google Scholar 

  53. Song, J. et al. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells. PLoS ONE 7, e47657 (2012).

    CAS  Google Scholar 

  54. Neth, P., Nazari-Jahantigh, M., Schober, A. & Weber, C. MicroRNAs in flow-dependent vascular remodelling. Cardiovasc. Res. 99, 294–303 (2013).

    CAS  Google Scholar 

  55. Zhou, J. et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc. Natl Acad. Sci. USA 108, 10355–10360 (2011).

    CAS  Google Scholar 

  56. Chen, L. J., Wei, S. Y. & Chiu, J. J. Mechanical regulation of epigenetics in vascular biology and pathobiology. J. Cell Mol. Med. 17, 437–448 (2013).

    CAS  Google Scholar 

  57. Liu, F. et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. 308, L344–L357 (2015).

    CAS  Google Scholar 

  58. Cui, Y. et al. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 6, 6333 (2015).

    CAS  Google Scholar 

  59. Halder, G., Dupont, S. & Piccolo, S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol Cell Biol. 13, 591–600 (2012).

    CAS  Google Scholar 

  60. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS  Google Scholar 

  61. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

    CAS  Google Scholar 

  62. Varelas, X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614–1626 (2014).

    CAS  Google Scholar 

  63. Piccolo, S., Dupont, S. & Cordenonsi, M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).

    CAS  Google Scholar 

  64. Gantier, M. P. et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 39, 5692–5703 (2011).

    CAS  Google Scholar 

  65. Hinson, J. S., Medlin, M. D., Taylor, J. M. & Mack, C. P. Regulation of myocardin factor protein stability by the LIM-only protein FHL2. Am. J. Physiol. 295, H1067–H1075 (2008).

    CAS  Google Scholar 

  66. Tariki, M. et al. The Yes-associated protein controls the cell density regulation of Hedgehog signaling. Oncogenesis 3, e112 (2014).

    CAS  Google Scholar 

  67. Vigneron, A. M., Ludwig, R. L. & Vousden, K. H. Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP. Genes Dev. 24, 2430–2439 (2010).

    CAS  Google Scholar 

  68. Dingal, P. C. et al. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat. Mater. 14, 951–960 (2015).

    CAS  Google Scholar 

  69. Escacena, N., Quesada-Hernandez, E., Capilla-Gonzalez, V., Soria, B. & Hmadcha, A. Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells. Stem Cells Int. 2015, 895714 (2015).

    Google Scholar 

  70. Wu, Y., Wang, J., Scott, P. G. & Tredget, E. E. Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen. 15, S18–S26 (2007).

    Google Scholar 

  71. Qi, Y. et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J. Invest. Dermatol. 134, 526–537 (2014).

    CAS  Google Scholar 

  72. Zhang, L. & Chan, C. Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. J. Vis. Exp. 22, 1852 (2010).

    CAS  Google Scholar 

  73. Hinz, B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontol. 2000 63, 14–28 (2013).

    Google Scholar 

  74. Wipff, P. J. et al. The covalent attachment of adhesion molecules to silicone membranes for cell stretching applications. Biomaterials 30, 1781–1789 (2009).

    CAS  Google Scholar 

  75. Darby, I., Skalli, O. & Gabbiani, G. α-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab. Invest. 63, 21–29 (1990).

    CAS  Google Scholar 

  76. Sarrazy, V. et al. Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc. Res. 102, 407–417 (2014).

    CAS  Google Scholar 

  77. Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749–1752 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Lammerding (Cornell University, Ithaca, New York, USA) and M. K. Vartiainen (University of Helsinki, Helsinki, Finland) for providing full-length and truncated constructs of MRTF-A-GFP. This research was supported by grants to B.H. from the Canadian Institutes of Health Research CIHR (grants no. 210820, no. 286920 and no. 286720), the Collaborative Health Research Programme (CIHR/NSERC grants no. 1004005 and no. 413783), and the Canada Foundation for Innovation and Ontario Research Fund (CFI/ORF grant no. 26653) and grants to A.Kapus from the CIHR (MOP-106625 and 130463), the Canadian Foundation of Innovation and the Kidney Foundation of Canada. Data presented herein were further funded from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreement no. 237946 and the CIHR Cell Signals Training programme. C.L. was supported by the CIHR Training Program in Regenerative Medicine (TPRM) and an Ontario graduate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.X.L., B.H., N.P.T. and J.L.B. conceived the ideas and designed the experiments. C.X.L., E.K.-W., N.P.T., P.S., A.Koehler and S.B. performed experiments and analysed the data. C.X.L., B.H., N.P.T., A.Kapus and J.L.B. interpreted the data and wrote the manuscript. B.H. directed the work.

Corresponding author

Correspondence to Boris Hinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4736 kb)

Supplementary Information

Supplementary movie 1 (AVI 1683 kb)

Supplementary Information

Supplementary movie 2 (AVI 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Talele, N., Boo, S. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nature Mater 16, 379–389 (2017). https://doi.org/10.1038/nmat4780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing